North I-25 Project

Cost Estimate Review

FINAL REPORT

July 2010

THIS PAGE INTENTIONALLY LEFT BLANK.

Executive Summary

The Federal Highway Administration (FHWA), the Colorado Department of Transportation (CDOT), and their consultants participated in a workshop to review the cost estimate and schedule for the North I-25 Project at the CDOT Region 6 Offices in Denver, Colorado during July of 2010. The objective of the review was to verify the accuracy and reasonableness of the current CDOT total cost estimate and schedule and to develop a probability range for the cost estimate that represents the project's current stage of development.

It should be noted that this project is in the final stages of the environmental process. The Final Environmental Impact Statement (EIS) is currently scheduled for February 2011 with a Phase I Record of Decision (ROD) anticipated for summer 2011. This cost estimate review analyzed the cost estimates for both the overall Final EIS Preferred Alternative and Phase I of the project.

Significant results of the review:

- The anticipated project schedule is determined by anticipated funding. Furthermore, the project has a long delivery timeframe and the project estimate in terms of year of expenditure (YOE) dollars is considerably more expensive when compared to the base (2009) costs. The three phases of the preferred alternative are currently scheduled for completion in years 2035, 2055, and 2075, respectively.
- The CDOT post-review Preferred Alternative project estimate is $\$ 2.178$ billion (2009 dollars) and $\$ 7.712$ billion (YOE). Based on the review, the escalated range of costs for the total project is between $\$ 6.748$ billion and $\$ 11.495$ billion with an 80% confidence.
- The CDOT post-review Phase I project estimate is $\$ 641.0$ million (2009 dollars) and $\$ 1.101$ billion (YOE). Based on the review, the escalated range of costs for the total project is between $\$ 1.098$ billion and $\$ 1.374$ billion with an 80% confidence.
- The current Phase I estimate of $\$ 1.101$ billion is at a 10% confidence level. The estimate at the 70% level of confidence is $\$ 1.271$ billion. This is the minimum level of funding that must be committed to the project for the approval of the Major Project Financial Plan.
- Project schedule could potentially lower or increase YOE cost. For example, for each year Phase I is delayed, the project cost is expected to increase by approximately $\$ 48$ million. This is consistent with the results of the analysis showing that the most significant influence on the project cost was the escalation of the construction costs.

Table of Contents

EXECUTIVE SUMMARY II
INTRODUCTION. 6
Review Objective. 6
Basis of Review 6
PROJECT BACKGROUND 7
Estimate Summary 11
Estimate Adjustments 12
Threats and Opportunities 12
Review Findings 14
Review Recommendations 14
Next Steps 14
CHAPTER 2 - REVIEW METHODOLOGY 15
Study Objective 15
Review Team 15
Review Process 16
CHAPTER 3 - PROBABILITY ANALYSIS 17
Forecast Results for Total Project Cost 18
Percentile Rankings of Total Project Cost 20
Sensitivity Analysis 21
Selected Assumptions Curves 23
Schedule Analysis 27
SUMMARY 28

APPENDIX

CER Agenda 2
CER Sign-In Sheet 4
CER PROBABILITY ANALYSIS REPORT 8
CER Probability Analysis Report with Schedule Variability 10
CER Closeout Presentation 12
North I-25 CER Information Packet 14

CHAPTER 1 - REVIEW SUMMARY

Introduction

The Federal Highway Administration (FHWA) and the Colorado Department of Transportation (CDOT) conducted a workshop in Denver, Colorado to review the cost and schedule estimates for the North I-25 Project. The workshop was conducted at the CDOT's Region 6 Office on July 12-15, 2010.

The intent of the review was to verify the accuracy and reasonableness of the current CDOT total cost estimate and schedule and to develop a probability range for the cost estimate that represents the current stage of project development. This document summarizes and reports the results of this review. Appendix F of this report includes the Review Team's close-out presentation given on July 15, 2010.

It should be noted that the environmental document for this project will be progressed as a phased Record of Decision (ROD). Thus, this cost estimate review analyzed the cost estimates for both the overall Final Environmental Impact Statement (EIS) Preferred Alternative and Phase I of the project.

Review Objective

The objective of the cost estimate review was to conduct an unbiased risk-based review to verify the accuracy and reasonableness of the current total cost estimate to complete the project and to develop a probability range for the cost estimate that represents the current stage of project design. Part of this study is to also review the proposed construction schedule to determine its impact on the project cost.

Basis of Review

The "Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users" (SAFETEA-LU) (Pub.L. 109-59, 119 Stat. 1144) requires the financial plan for all Federal-aid projects with an estimated total cost of \$500,000,000 or more to be
approved by the Secretary (i.e. FHWA) based on reasonable assumptions. The $\$ 500,000,000$ threshold includes all project costs (Engineering, Construction, Right-ofWay (ROW), Utilities, Construction Engineering, Inflation, etc.). The FHWA has interpreted "reasonable assumptions" to be a risk based analysis. Projects that are \$100- \$500 million are subject to review at the discretion of the FHWA Division Office. The cost estimate reviews are required to provide the risk based assessment of the estimate and are used in the approval of the financial plan.

Project Background

DESCRIPTION

The CDOT, in cooperation with the FHWA and the Federal Transit Administration (FTA), has begun to develop a project known as the North I-25 Project that will make improvements to the Interstate 25 corridor from the Fort Collins-Wellington area to Denver. The three phase project includes the following activities:

- General Purpose Lanes: One new general purpose lane in each direction of I-25 between State Highway 66 and State Highway 14.
- Tolled Express Lanes (TEL): One buffer-separated TEL in each direction of I-25 from the existing high occupancy vehicle/toll lanes at 84th Avenue to SH 14.
- Interchange Improvements: 16 interchanges along the corridor will be upgraded.
- Express Bus: Addition of express bus service with 13 stations along I-25, US 34 and Harmony Road with service from Fort Collins and Greeley to downtown Denver and from Fort Collins to Denver International Airport.
- Commuter Rail: Addition of commuter rail service with 9 stations connecting Fort Collins to Longmont and Thornton using the Burlington Northern Santa Fe Railroad, generally paralleling US 287 and tying into FasTracks North metro rail in Thornton which will connect to Downtown Denver. Passengers may also connect to the FasTracks northwest rail in Longmont, which will travel to Boulder.
- Commuter Bus: Addition of commuter bus service with 8 stations along US 85 connecting Greeley to downtown Denver.
- Congestion Management: These improvements include accommodations for ridesharing, carpools, and vanpools, along with additional bicycle and pedestrian facilities. Also, signal timing, ramp metering on I-25 and signage may be improved.

Phase I consist of the following work activities:

- Widening I- 25 between SH 66 and SH 56 with one TEL in each direction.
- Widening I-25 between SH 392 and Prospect.
- Widening I-25 between 120th Avenue and approximately US 36 with one bufferseparated TEL in each direction.
- I-25 interchange replacements and upgrades at SH 14, Prospect, SH 56, CR 34, SH 7, 104th Avenue. Thornton Parkway and 84th Avenue will be constructed to their ultimate configurations.
- Six carpool lots upgraded at I-25 interchanges.
- Commuter rail right of way preservation.
- I-25 regional bus service will be initiated connecting Fort Collins and Greeley to downtown Denver and Denver International Airport, including construction of four transit stations and the purchase of 27 buses.
- Commuter bus along US 85 connecting Greeley to downtown Denver would be implemented, including construction of five stations, 17 queue jumps/transit signal priority intersections and the purchase of five buses.
- One or more of the existing bus maintenance facilities in northern Colorado will be upgraded.

PURPOSE AND NEED

The purpose of the proposed project is to meet long-term travel needs between the For-Collins-Wellington area, the rapidly growing population centers along the I-25 corridor, and south to the Denver Metro area. To meet long-term travel needs, the project must improve safety, mobility and accessibility, and provide modal alternatives and interrelationships.

The project is needed because there has been an increased frequency and severity of crashes, increased traffic congestion leading to mobility and accessibility problems, aging and functionally obsolete infrastructure, and lack of modal alternatives.

LOCATION

The project is located north of Denver along the I-25 corridor. The project area extends from SH 1 in Fort Collins/Wellington at the north end to US 36 on the south, and from US 287 and the Burlington Northern and Santa Fe (BNSF) Railway routes on the west to US 85 and the Union Pacific Railroad (UPRR) routes on the east. The project spans portions of four counties: Adams, Boulder, Larimer, and Weld. The project involves three transportation planning regions (TPRs): the Denver Regional Council of Governments (DRCOG), the North Front Range Metropolitan Planning Organization (NFRMPO), and the Upper Front Range Regional Planning Commission (UFRRPC). Major population centers in the project area include Fort Collins, Greeley, Loveland, and the communities in the northern portion of the Denver metropolitan area (Denver Metro Area).

The limits of the entire North I-25 Project are shown in Figure 1, North I-25 Project Location Map.

LEGEND	
-	Tolled Express Lanes
\square	General Purpose Lanes
	Express Bus
	Commuter Bus
\square	Commuter Rail
$\underline{\square}$	Feeder Bus Service
\rangle	Interchange Upgrades
x / x	Number of Lanes: General Purpose/Tolled Express
-	Express Bus Transit Station
-	Commuter Bus Transit Station
-	Commuter Rail Transit Station
\star	Carpool Lots
\square	Commuter Rail Operational \& Maintenance Facility
	Commuter Bus Operational \& Maintenance Facility
\square	FasTracks Rail Line
\bigcirc	FasTracks / RTD Transit Station
	RTD Boundary

FIGURE 1 North I-25 Project Location Map

SCHEDULE

This project is currently in the final stages of the environmental process. The Draft EIS was approved in October 2008. The Final EIS is currently scheduled for February 2011 with a Phase I ROD anticipated for summer 2011. The project is currently at a $5-20 \%$ design level. Construction is not anticipated to start until 2020. The current construction schedule is based on the 2035 long range fiscally constrained plan that identifies when the funds will become available for construction. The project schedule is shown in Table 1.

PROJECT SCHEDULE	
Draft EIS	October 2008
Preferred Alternative Identified	December 2009
Final EIS	February 2011
Phase I Record of Decision	June 2011
Phase I Construction Duration	$2020-2035$
Phase II Construction Duration	$2036-2055$
Phase II Construction Duration	$2056-2075$

Table 1 North I-25 Project Schedule

Estimate Summary

The CDOT provided a cost estimate for the project prior to the workshop. The CDOT pre-review estimate for the preferred alternative was $\$ 2,184.1$ million in 2009 dollars and included design/engineering, construction, construction engineering, environmental mitigation, ROW, costs expended, inflation, and contingencies. Adjustments were made during the review that decreased the estimate to $\$ 2,178.5$ million in 2009 dollars. The pre-review estimate for Phase I was $\$ 648.5$ million in 2009 dollars and decreased to $\$ 640.9$ million in 2009 dollars after changes were made to the estimate.

Cost estimates, especially those for Major Projects, usually contain a degree of uncertainty due to unknowns and risks associated with the level of design detail completion. For this reason, it is logical to use a probabilistic approach and express the estimate as a range rather than a point value. To express the estimate as a range, risks and opportunities were developed and the workshop review team selected assumption curves that best modeled the cost impacts and probabilities based on the uncertainty associated with those risks and opportunities. The assumption curves were incorporated into a Monte Carlo simulation program to forecast a range
of estimated project costs. Chapter 3 discusses the assumptions and results of the probabilistic analysis for this project in more detail.

Estimate Adjustments

During the review, changes were made to some of the items in the pre-review estimate. These changes are identified as follows:

- Inflation Factor
o Lowered to 3.3\% (from 4.35\%)
- Assumption curve from 2.7\% to 5.3\%
o Added separate factor for ROW (5\%)
- Assumption curve from 4% to 6%
- Concrete pavement lowered, \$41/sy to \$38.50/sy
- Type 7 guardrail lowered from $\$ 90 / \mathrm{lf}$ to $\$ 75 / \mathrm{If}$
- Cable guardrail raised, $\$ 10 / l f$ to $\$ 20 /$ If
- Erosion control (highway) allowance from 3.1\% to 5\%
- Mobilization (highway - R4) from 15.7% to 11.0%
- Retaining Wall 10 '-20' (rail) from $\$ 700 / l f$ to $\$ 690 /$ If
- Unforeseen Condition (rail) from 1\% to 5\%
- ROW (rail) from \$24.8m to $\$ 26.4 m$

Threats and Opportunities

During the course of the review the team identified and discussed numerous threats and opportunities. A threat is anything that can add to the cost of the project. An opportunity is anything that can reduce the cost of the project. Some of these are listed below.

Threats:

- Funding availability
o Letting delay (increase in inflation)
- Market conditions
o Material prices (i.e. steel, fuel)
o Unknown future inflation
- Environmental permit delays
o Regulation changes
- Design, criteria changes, soils
- Uncertainty on owner/operator of rail and bus
- Rail line on new alignment
- Railroad agreements, payments, design reviews
- Land use changes (ROW, ridership)
- Project timeframe (65 years)
- Unknown procurement method

Opportunities:

- Market conditions
o Material prices (i.e. steel, fuel)
o Potential reduction in inflation
o Better pricing through competition
- Technology
o Bridges, ITS
- Retaining wall/ROW trade-off
- Final design
- Schedule acceleration - Funding availability
- Innovative procurement
- More regional commuter rail experience in the future
- Not overly complex roadway project

Review Findings

The review team found many examples of good estimating practices. Some of these include the following:

- Use of unit prices and historical percentages from recent similar projects in the I25 corridor
- More detailed estimate than typical at this stage of a project
- Up front consideration of variation in prices and quantities
- Used lessons learned from previous CERs
- Involvement of CDOT executive/region management

Review Recommendations

During the workshop the Review Team developed the following recommendations for implementation:

- Finalize and submit environmental document, project management plan, and financial plan
- Refine and manage project schedule and budget
- Manage threats and opportunities through a risk management plan
- Look for opportunities to accelerate schedule to take advantage of current market conditions and inflation savings
- Develop consistent CDOT escalation rate

Next Steps

FHWA uses the resulting estimated cost of the project at the 70\% confidence level in the Final EIS document. Additionally, a Financial Management Information System (FMIS) Major Project Identifier should be requested for the project and the project's major project classification with the FHWA's Project Delivery Team should be changed to "active".

CHAPTER 2 - REVIEW METHODOLOGY

Study Objective

The objectives of the review were to verify the accuracy and reasonableness of the current total cost estimate and schedule to complete the project and to develop a probability range for the cost estimate that represents the current phase of project development. The project is currently in the final stages of the environmental phase.

Review Team

The project review team was developed with the intent of having individuals with a strong knowledge of the project and/or major project work and expertise in specific disciplines of the project. Throughout the workshop, the review team discussed the development of the project, cost estimate quantities, unit prices, assumptions, opportunities and risks. Individuals with specific project expertise briefed the review team on that portion of the project or estimate development process. The review agenda and sign-in sheet of the participants are provided in Appendices A and B, respectively.

The Review Team was comprised of the following members:

- FHWA
o Division Office
o Resource Center
o Headquarters
- CDOT
- Project Consultants - Felsburg Holt \& Ullevig

Documents provided by CDOT prior to the Review Team attending this workshop and documents available during the workshop were:

- Project History and Schedule
- Project Cost Estimate and Estimate Basis
- Draft Environmental Impact Statement
- Project Schematics and Aerial Layouts
- Comparable Project Data
- Inflation Data (from CDOT Construction Index, area Metropolitan Planning Organizations (MPO), and Regional Transportation District (RTD))

Review Process

- Project Team input
o FHWA, CDOT and Project Consultants
- Basis of Review
o Review based on estimates provided by the Team in advance with revisions made during the review
o Review to determine the reasonableness of assumptions used in the estimate
o Not an independent FHWA estimate
o Did not verify quantities and unit prices
- Methodology
o Estimate Review
- Understanding of estimate development process
- Explanation of contingencies and projected escalation rates
- Identification of threats and opportunities for various items
o Modeled Variation of Inputs
- Reviewed major cost elements
- Developed impacts and probabilities for significant project threats and opportunities
- Developed probability assumption distributions
o Performed Monte Carlo simulation to generate a project estimate forecast as a range

CHAPTER 3 - PROBABILITY ANALYSIS

The objective of the probability analysis during the workshop was to determine the review team's confidence level in the current values being produced for the estimate. The results of this probability analysis could then be used to determine if the risk/contingency factors in the estimate are reasonable.

The review team discussed each work package and major component, including the current estimate, scope, schedule, risks and opportunities. Based on this review, probability curves were selected for each of the major line items in the project estimates for each contract, considering the probability that the final bid or contract value would be within a certain range of the current estimate. Next, a forecast curve was generated from the random sampling (10,000 iterations) of the input probability curves previously defined by the review team. This type of analysis provided a statistical level of certainty that the variation of the forecast distribution curve reflected the underlying variation of the cost inputs as determined by the review team. The resulting forecast curves were then analyzed to provide information on the confidence level in the project cost estimates and remaining budgets.

The review team used a statistical software tool called Crystal Ball $®$ in order to establish a sense of perspective on the cost expectations for the project. This software selection is an addin program for use with the Excel ${ }^{\text {TM }}$ spreadsheet program and it permitted the application of Monte Carlo simulation technology to analyze key components of current cost estimates prepared by the project delivery team. As is the case with many real-world problems involving elements of uncertainty, the analysis of the variables is much too complex to be solved by strict analytical methods. There are simply too many combinations of input values to calculate every possible result. In the case of this workshop cost model, the Monte Carlo simulation supplied random numbers for selected cells identified as "assumption cells"; with these random numbers falling within the range of real-life possibilities defined by the Review Team. Each set of these random numbers is essential input to a "what-if" scenario. In this case, each scenario outcome represents a possible outcome from an expected real-world bidding and construction cycle. The model is recalculated for each scenario many times and builds a final forecast probability curve that reflects the combined uncertainty of the assumption cells on the model's output. This
plotted probability curve provides a range that can be expected for a final project cost, with degrees of certainty to model the potential final outcome.

The outcome depicted in this final probability curve is typically stated in the following manner: "There is an 80% (or whatever percentage depicted) degree of certainty that the construction cost will be in a range from $\$ x$ to $\$ y$, provided that our understandings and related assumptions do not change significantly between now and the end of construction." In order for this to work correctly the Review Team must supply the program with the probable range of unit costs and quantities for each assumption cell in the spreadsheet, and must supply an indicative characterization for the probability spread for each of these cells. This shows up in the form of probability distribution curves. The triangular probability curves are commonly used when relying on expert opinion. In the case of this workshop, the Review Team utilized a triangular probability distribution for the vast majority of assumption cells. The probability assumption curves depict how the Project Team modeled the major cost elements for this Project. Based on these assumption curves, the Monte Carlo analysis would select a random number for each of these curves and sum each random selection for the resulting probabilities. The probability assumption curves shown in this section are only for those items that have a significant impact on the results of the analysis.

Forecast Results for Total Project Cost

Figures 2 and 3 depict the forecast curve for the total project cost in YOE dollars for the Preferred Alternative and Phase I, respectively. These costs include design/engineering, construction, construction engineering, environmental mitigation, ROW, costs expended, escalation, and contingencies. The certainty in Figure 2, shown by the blue shaded area, represents an 80% probability that the total YOE cost for the project will be between $\$ 6,748.0$ million and $\$ 11,495.4$ million. Additionally, the figure shows that the estimate at the 70% level of confidence is $\$ 9.474 .9$ million (YOE). This can be interpreted as a 70% probability that the total Preferred Alternative cost will be $\$ 9,474.9$ million (YOE) or less. Alternatively, there is a 30% probability the project cost will be $\$ 9,474.9$ million (YOE) or higher.

FIGURE 2 - Distribution of Total Project Year of Expenditure Costs for the Preferred Alternative showing base cost and 70\% probability cost

Figure 3 shows that there is an 80% chance that the total Phase 1 project cost will be between $\$ 1,098.3$ million and $\$ 1,374.1$ million (YOE). Additionally, the figure shows that the estimate at the 70% level of confidence is $\$ 1,271.2$ million (YOE). The cost at the 70% probability is considered the minimum amount of funding needed to approve the Major Project Financial Plan for the project. The base case (i.e. estimate after adjustments made during review) of \$1,100.6 million (YOE) is also shown in Figure 3. As shown, the cost at 70% minimum exceeds the base case estimate by $\$ 170.6$ million dollars. This difference is approximately a 16% increase to the base case estimate.

FIGURE 3 - Distribution of Total Project Year of Expenditure Costs for Phase I showing base cost and 70\% probability cost

Percentile Rankings of Total Project Cost

The values that comprise Figures 2 and 3 are shown in Table 2 as percentile rankings of the total project costs in YOE dollars for the Preferred Alternative and Phase I. As shown in the table, there is a 70% probability that total Phase I project costs will be less than $\$ 1,271.2$ million. However, there is only a 10% probability the project costs will be less than $\$ 1,098.4$ million and a 10% probability of the project costs will exceed $\$ 1,374.1$ million.

Percentile	Preferred Alternative	Phase 1
$\mathbf{0 \%}$	$\$ 5,449,159,000$	$\$ 953,461,000$
$\mathbf{1 0 \%}$	$\$ 6,748,013,000$	$\$ 1,098,393,000$
$\mathbf{2 0 \%}$	$\$ 7,125,178,000$	$\$ 1,130,345,000$
$\mathbf{3 0 \%}$	$\$ 7,482,515,000$	$\$ 1,156,061,000$
$\mathbf{4 0 \%}$	$\$ 7,856,255,000$	$\$ 1,181,538,000$
$\mathbf{5 0 \%}$	$\$ 8,290,487,000$	$\$ 1,207,181,000$
$\mathbf{6 0 \%}$	$\$ 8,817,202,000$	$\$ 1,237,705,000$
$\mathbf{7 0 \%}$	$\$ 9,474,923,000$	$\$ 1,271,239,000$
$\mathbf{8 0 \%}$	$\$ 10,305,317,000$	$\$ 1,312,975,000$
$\mathbf{9 0 \%}$	$\$ 11,495,429,000$	$\$ 1,374,174,000$
$\mathbf{1 0 0 \%}$	$\$ 16,346,966,000$	$\$ 1,629,202,000$

TABLE 2 - Percentile Rankings of Total Project Cost in Year of Expenditure Dollars

Sensitivity Analysis

The sensitivity charts in Figures 4 and 5 show how the variation in the cost estimate components impact the variation of the total cost estimate for the project. Those inputs at the top of the graph have greater impact on the variation in total project costs (both positively and negatively) while those at the bottom have less impact. As shown in Figure 4, the unit cost of construction escalation accounts for 81.5% of the total project cost variability. This chart can be used to better understand the key drivers in the project cost estimate. Assumption curves for inputs with a significant impact on the total cost estimate are discussed in greater detail below.

FIGURE 4 - Sensitivity Chart for Year of Expenditure Costs of the Preferred Alternative

FIGURE 5 - Sensitivity Chart for Year of Expenditure Costs of Phase I

Selected Assumptions Curves

Assumed Construction Unit Cost Rate of Escalation

This project's anticipated schedule assumes the Preferred Alternative will be constructed by 2075 and that Phase I of the project will be completed by 2035. After reviewing data from CDOT's Construction Cost Index, as well as escalation rates and methodologies of area MPOs and the RTD, the project team decided the best way to handle inflation was to use a constant escalation rate for the duration of the project. This approach seemed to better reflect the long project length and fluctuations in the economy that typically occur from year to year. An escalation rate of 3.3% with a range of $2.74-5.34 \%$ was used. Figure 6 shows the assumption
curve for construction unit cost rate of escalation. This range represents a low to moderate level of inflation.

FIGURE 6 - Assumption Curve for the Construction Unit Cost Rate of Escalation

Assumed ROW Unit Cost Rate of Escalation

The project team also modeled the uncertainty of the rate of escalation for ROW. Based on data such as the home price index from 1970 to 2010 and market value assessments from area assessors' offices, CDOT's ROW Unit recommended a ROW rate of escalation of 5\%. Based on this input, the escalation rate was modeled as having a possible minimum value of 4% and a maximum value of 6%. Figure 7 shows the triangular distribution curve used to model this variation in ROW unit cost rate of escalation.

FIGURE 7 - Assumption Curve for the Assumed ROW Unit Cost Rate of Escalation

Earthwork - Region 4 (UC)

During the review, it was determined there is uncertainty in the cost associated with the earthwork for Region 4. The unit cost of earthwork included embankment material, unclassified excavation and muck excavation and was based on similar, recently completed projects on I-25 in Region 4. The cost of earthwork ranged from 15% to 30% of the quantified, major items in the estimate with a midpoint of 22.8%. Figure 8 shows the Student's t distribution used to model the variation in the unit cost of earthwork in Region 4.

FIGURE 8 - Assumption Curve for Construction Inflation in Year 2013

Commuter Rail Unforeseen Conditions

The costs of the commuter rail are a major component of the Preferred Alternative. Additionally, because of the current level of design, limited experience with commuter rail in the region, unidentified owner/operator of the rail service, and lack of final agreements with the railroad companies, the project team determined there are unknowns associated with the cost of the commuter rail that should be modeled using the Monte Carlo simulation. Based on these considerations, the cost of items related to unforeseen conditions was estimated at 5\% of the construction cost of the commuter rail bid items with a variation from 0% to 5%. Figure 9 shows the triangular distribution curve used to model the variation in the unforeseen conditions for commuter rail.

FIGURE 9 - Assumption Curve for Commuter Rail Unforeseen Conditions

Schedule Analysis

Because of the current development stage of the project and duration of the project, the project team determined that it would be beneficial to analyze some of the effects of the schedule on the cost estimate. The current schedule is based on the 2035 long range fiscally constrained plan that identifies when the funds will become available for construction. It was determined that a one-year delay in the current project schedule for the Preferred Alternative would increase project cost by approximately $\$ 385.1$ million. For Phase 1 , a one-year delay to the project would be an additional $\$ 48.4$ million.

Additionally, an analysis was performed that modeled variability associated with the schedule of the project. Ranges were place on the mid-year of construction in the original cost estimate worksheet and a Monte Carlo simulation was executed. For example, the construction of the SH 7 Par-clo Interchange scheduled to take place in Phase I was modeled as most likely occurring in 2030 with a possibility of occurring between 2025 and 2035. Table 3 shows the results of this analysis and its comparison with the forecast results discussed in previous
sections of this report that did not model the variability of schedule. The results are most significant for the Preferred Alternative. These results show that by adding flexibility to the schedule and the possibility of accelerating construction, the total project 70% level of confidence cost for the Preferred Alternative decreases by approximately $\$ 600$ million. The full Crystal Ball Report for this analysis is included in the Appendix D.

		FORECAST	
		No Schedule Variability	Schedule Variability
PREFERRED ALTERNATIVE	70% (YOE)	$\$ 9,474,923,000$	$\$ 8,877,822,000$
	Baseline (YOE)	$\$ 7,712,231,000$	$\$ 7,712,231,000$
	$70 \%(2009)$	$\$ 2,144,469,000$	$\$ 2,144,113,000$
	Baseline (2009)	$\$ 2,178,470,000$	$\$ 2,178,470,000$
PHASE I	70% (YOE)	$\$ 1,271,239,000$	$\$ 1,211,703,000$
	Baseline (YOE)	$\$ 1,100,612,000$	$\$ 1,100,612,000$
	$70 \%(2009)$	$\$ 677,280,000$	$\$ 677,424,000$
	Baseline (2009)	$\$ 640,997,000$	$\$ 640,997,000$

TABLE 2 - Percentile Rankings of Total Project Cost in Year of Expenditure Dollars

Summary

This probabilistic analysis resulted in a cost estimate at the 70% confidence level of $\$ 9,474.9$ million (YOE) for the Preferred Alternative of the North I-25 Project. The cost for Phase I at the 70% confidence level was $\$ 1,271.2$ million (YOE). These costs should be reported in the Final EIS for the project, as well as in any project information conveyed to the public. The 70% confidence level is also the minimum amount of funding that must be shown for the approval of the Financial Plan. The Appendix includes a PDF file of the entire report of inputs and results of this analysis.

THIS PAGE INTENTIONALLY LEFT BLANK.

APPENDIX

THIS PAGE INTENTIONALLY LEFT BLANK.

Appendix A

CER Agenda

CDOT Region 4 - North I- 25 EIS
Monday, July 12 to Friday July 16, 2010
@CDOT Region 6
North Holly Office Training Classroom 4670 Holly Street, Unit D Denver, CO 80216

Project Introduction
Monday, July 12
8:00 AM Field Review
12:00 PM Lunch
1:00 PM Introductions and Overview of CER Process by FHWA
2:00 PM Project and Cost Estimate Methodology Overview
2:30 PM Escalation
3:30 PM Removals/Relocations
5:00 PM Adjourn
Roadway Tuesday, July 13
8:30 AM Construction/Reconstruction (Base and Surface Treatments)

9:30 AM Earthwork
10:30 AM Landscaping, Roadside Features
11:30 AM Lunch
12:30 PM Bridges/Structures/Retaining Walls/Sound Walls
1:30 PM Port of Entry
2:30 PM Unforeseen Conditions
3:30 PM Utilities/Planning and Engineering
4:30 PM Right-of-Way
5:00 PM Adjourn
Transit and Additional Roadway
Wednesday, July 14

8:30	AM	Express Bus and Commuter Bus
9:30	AM	Carpool Lots
10:30	AM	Commuter Rail including Insurance and Legal
11:30	AM	Lunch
12:30	PM	Lighting, Traffic Signals, Permanent Signing/Striping
1:30	PM	Intelligent Transportation System, Managed Lane System
2:30	PM	Construction Traffic Control
3:30	PM	Drainage/Erosion Control
4:30	PM	Mobilization
5:00	PM	Adjourn

Team Work and Closeout
Thursday, July 15
8:30 AM Items not previously covered (or follow upon previous line items)
9:30 AM CER Team Work
12:00 PM Lunch
1:00 PM Closeout Dry Run
2:00 PM Closeout Presentation
5:00 PM Adjourn
Friday, July 16 Closeout Presentation (If the review progresses longer than expected, then the Closeout Presentation could be Friday morning; TBD)

Appendix B

CER Sign-In Sheet

Cost Estimete ReviewName
Drganizietion
EMAIL
Holly Bock
Ina Eisman
Felsburg telty ullerig Holly. Buckefwengel
0007
NA.EISman ODOT, STATE, co. US

Name

Kendra Gabbert
Ina Zisman

Organization
Email
Felsburg Holt and ullevig kendra.gabbertefnueng.io EDQT INA,ZISMANE 20T, STATE.CO.Les

I25 Klomza Cunneson Closear fresenvation - Juay 15

Brenite Rios
La roya Jitusor
Raph Rizeo
Tohmay Olson
MYEON HORA
Ina Zisman
Cinay Otegui
Kendra Gabbest
Holly Buck
ANGIE ERUMM
Carol-Parr
Mark Gosselin
Tom Anzia
Gus Busber Long Nguyert
Brian Wiltshire
Shave Cutting
Pam Nutton
Peogy Cation
thathie kelly
Monica Parlik
vivien homa
David Kosmiski

FHWA RC
FHuA Ho
Fhunt RC
COOT RIVRD
CDOT EY EPEM
CDOT RU Tratix
Felsburg Holt \$ ullevig
Fitl
FHu CDOT Grout Rel
CDOT R4
CDOT R4
FHO
CDOT
CDOT
Febburg Holt + Ullarig
FHWA
CDOT
CDOT
FlHeva co DIV
FHWA co dir
Fhema co ar
CDOT-RG

Appendix C

CER Probability Analysis Report

THIS PAGE INTENTIONALLY LEFT BLANK.

Crystal Ball Report - Custom
 Simulation started on 7/15/2010 at 1:19 AM Simulation stopped on 7/15/2010 at 1:20 AM

Run preferences:Number of trials runExtreme speed
Latin Hypercube (size) 500
Seed 999
Precision control onConfidence level
Run statistics:
Total running time (sec) 26.53
Trials/second (average) 377
Random numbers per sec 50,893
Crystal Ball data:
Assumptions 135
Correlations 0
Correlated groups 0
Decision variables 0
Forecasts 4

Forecasts

Worksheet: [North_I-25 CER 7-14-2010pm FINAL.xlsx]Phase 1 (2009)

Forecast: Phase 1 (2009)

Summary:
Certainty level is 80.00\%
Certainty range is from $\$ 633,931,000$ to $\$ 697,208,000$
Entire range is from $\$ 576,217,000$ to $\$ 763,906,000$
Base case is $\$ 640,997,000$
After 10,000 trials, the std. error of the mean is $\$ 245,694$

Statistics:	Forecast values
Trials	10,000
Base Case	$\$ 640,997,000$
Mean	$\$ 664,803,375$
Median	$\$ 663,905,000$
Mode	$\$ 646,761,000$
Standard Deviation	$\$ 24,569,361$
Variance	0.1574
Skewness	2.94
Kurtosis	0.0370
Coeff. of Variability	$\$ \# \# \# \# \# \# \# \# \# \# \# \# \# \# \#$
Minimum	$\$ 763,217,000$
Maximum	$\$ 187,689,000$
Range Width	$\$ 245,694$

Forecast: Phase 1 (2009) (cont'd)

Percentiles:	Forecast values
0%	$\$ 576,217,000$
10%	$\$ 633,931,000$
20%	$\$ 643,808,000$
30%	$\$ 651,091,000$
40%	$\$ 657,702,000$
50%	$\$ 663,899,000$
60%	$\$ 670,289,000$
70%	$\$ 677,280,000$
80%	$\$ 685,512,000$
90%	$\$ 697,208,000$
100%	$\$ 763,906,000$

Worksheet: [North_I-25 CER 7-14-2010pm FINAL.xIsx]Phase 1 (YOE)

Forecast: Phase 1 (YOE)

Summary:
Certainty level is 80.00%
Certainty range is from $\$ 1,098,393,000$ to $\$ 1,374,174,000$
Entire range is from \$953,461,000 to \$1,629,202,000
Base case is $\$ 1,100,612,000$
After 10,000 trials, the std. error of the mean is $\$ 1,048,970$

Statistics:	Forecast values
Trials	10,000
Base Case	$\$ 1,100,612,000$
Mean	$\$ 1,222,720,245$
Median	$\$ 1,207,185,000$
Mode	$\$ 1,112,381,000$
Standard Deviation	$\$ 104,896,978$
Variance	0.5502
Skewness	2.85
Kurtosis	0.0858
Coeff. of Variability	$\$ 9 \# \# \# \# \# \# \# \# \# \# \# \# \#$
Minimum	$\$ 1,629,202,000$
Maximum	$\$ 675,741,000$
Range Width	$\$ 1,048,970$

Percentiles:	Forecast values
0%	$\$ 953,461,000$
10%	$\$ 1,098,393,000$
20%	$\$ 1,130,345,000$
30%	$\$ 1,156,061,000$
40%	$\$ 1,181,538,000$
50%	$\$ 1,207,181,000$
60%	$\$ 1,237,705,000$
70%	$\$ 1,271,239,000$
80%	$\$ 1,312,975,000$
90%	$\$ 1,374,174,000$
100%	$\$ 1,629,202,000$

Worksheet: [North_l-25 CER 7-14-2010pm FINAL.xlsx]Preferred Alt (2009)

Forecast: Preferred Alt (2009)

Summary:
Certainty level is 80.00%
Certainty range is from $\$ 2,021,659,000$ to $\$ 2,198,051,000$
Entire range is from $\$ 1,884,248,000$ to $\$ 2,358,783,000$
Base case is $\$ 2,178,470,000$
After 10,000 trials, the std. error of the mean is $\$ 688,127$

Statistics:	Forecast values
Trials	10,000
Base Case	$\$ 2,178,470,000$
Mean	$\$ 2,108,980,935$
Median	$\$ 2,107,467,500$
Mode	$\$ 2,094,284,000$
Standard Deviation	$\$ 68,812,712$
Variance	0.1257
Skewness	2.97
Kurtosis	0.0326
Coeff. of Variability	$\$ 1,884,248,000$
Minimum	$\$ 2,358,783,000$
Maximum	$\$ 474,535,000$
Range Width	$\$ 688,127$

Percentiles:	Forecast values
0%	$\$ 1,884,248,000$
10%	$\$ 2,021,659,000$
20%	$\$ 2,049,994,000$
30%	$\$ 2,071,716,000$
40%	$\$ 2,090,949,000$
50%	$\$ 2,107,467,000$
60%	$\$ 2,124,171,000$
70%	$\$ 2,144,469,000$
80%	$\$ 2,166,145,000$
90%	$\$ 2,198,051,000$
100%	$\$ 2,358,783,000$

Worksheet: [North_I-25 CER 7-14-2010pm FINAL.xIsx]Preferred Alt (YOE)

Forecast: Preferred Alt (YOE)

Summary:
Certainty level is 80.00%
Certainty range is from $\$ 6,748,013,000$ to $\$ 11,495,429,000$
Entire range is from $\$ 5,449,159,000$ to $\$ 16,346,966,000$
Base case is $\$ 7,712,231,000$
After 10,000 trials, the std. error of the mean is $\$ 18,560,855$

Statistics:	Forecast values
Trials	10,000
Base Case	$\$ 7,712,231,000$
Mean	$\$ 8,748,202,522$
Median	$\$ 8,290,684,000$
Mode	$\$ 7,341,484,000$
Standard Deviation	$\$ 1,856,085,473$
Variance	0.8967
Skewness	3.24
Kurtosis	0.2122
Coeff. of Variability	$\$ 5,449,159,000$
Minimum	$\$ 16,346,966,000$
Maximum	$\$ 10,897,807,000$
Range Width	$\$ 18,560,855$

Forecast: Preferred Alt (YOE) (cont'd)

Percentiles:	Forecast values
0%	$\$ 5,449,159,000$
10%	$\$ 6,748,013,000$
20%	$\$ 7,125,178,000$
30%	$\$ 7,482,515,000$
40%	$\$ 7,856,255,000$
50%	$\$ 8,290,487,000$
60%	$\$ 8,817,202,000$
70%	$\$ 9,474,923,000$
80%	$\$ 10,305,317,000$
90%	$\$ 11,495,429,000$
100%	$\$ 16,346,966,000$

[^0]
Assumptions

Worksheet: [North_I-25 CER 7-14-2010pm FINAL.xIsx]Unit Costs

Assumption: QUEUE JUMP SIGNALS (UC)

Triangular distribution with parameters:

Minimum
Likeliest Maximum
\$176,000 (=\$F\$64)
\$250,000 (=\$E\$64)
\$289,000 (=\$G\$64)

Assumption: BRIDGE - FLYOVER (UC)
Cell: E24
Triangular distribution with parameters:

Minimum	$\$ 102$	$(=\$ F \$ 24)$
Likeliest	$\$ 120$	$(=\$ E \$ 24)$
Maximum	$\$ 170$	$(=\$ G \$ 24)$

Assumption: BRIDGE - LONG SPAN (UC)
Cell: E22

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
\$85 (=\$F\$22)
\$115 (=\$E\$22)
\$170 (=\$G\$22)

Assumption: BRIDGE - PEDESTRIAN OVERPASS (UC)
Triangular distribution with parameters:

Minimum	$\$ 700$	$(=\$ F \$ 23)$
Likeliest	$\$ 910$	$(=\$ E \$ 23)$
Maximum	$\$ 1,000$	$(=\$ G \$ 23)$

Assumption: BRIDGE - STANDARD (UC)
Cell: E21

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
\$85 (=\$F\$21)
\$105 (=\$E\$21)
\$150 (=\$G\$21)

Assumption: GUARDRAIL TYPE 7 (QF)

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
$0.90 \quad(=\$ 1 \$ 18)$
1.00 (=\$H\$18)
1.30 (=\$J\$18)

Triangular distribution with parameters:

Minimum	$\$ 65$	$(=\$ F \$ 18)$
Likeliest	$\$ 75$	$(=\$ E \$ 18)$
Maximum	$\$ 100$	$(=\$ G \$ 18)$

Assumption: OTHER EXISTING SIGNAL MODIFICATIONS (UC)
Cell: E65
Triangular distribution with parameters:

Minimum	$\$ 30,000$	$(=\$ F \$ 65)$
Likeliest	$\$ 50,000$	$(=\$ E \$ 65)$
Maximum	$\$ 60,000$	$(=\$ 6 \$ 65)$

Assumption: PAVEMENT - CROSSROADS/FRONTAGE ROADS (QF)

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
0.95 (=\$1\$16)
1.00 (=\$H\$16)
1.05 (=\$J\$16)

Assumption: PAVEMENT - CROSSROADS/FRONTAGE ROADS (UC)
Triangular distribution with parameters:

Minimum	$\$ 25$	$(=\$ F \$ 16)$
Likeliest	$\$ 33$	$(=\$$ E\$16)
Maximum	$\$ 40$	$(=\$ G \$ 16)$

Assumption: PAVEMENT - I-25 (UC)
Cell: E14
Triangular distribution with parameters:

Minimum	$\$ 35$	$(=\$ F \$ 14)$
Likeliest	$\$ 39$	$(=\$ E \$ 14)$
Maximum	$\$ 50$	$(=\$ 6 \$ 14)$

Assumption: PAVEMENT - I-25 (UC) (E17)
Cell: E17
Triangular distribution with parameters:

Minimum	$\$ 15$	$(=\$ F \$ 17)$
Likeliest	$\$ 22$	$(=\$ E \$ 17)$
Maximum	$\$ 24$	$(=\$ G \$ 17)$

Assumption: PAVEMENT - QUEUE JUMPS (UC)
Triangular distribution with parameters:

Minimum	$\$ 50$	$(=\$ F \$ 56)$
Likeliest	$\$ 57$	$(=\$ E \$ 56)$
Maximum	$\$ 60$	$(=\$ G \$ 56)$

Assumption: PAVEMENT - RAMPS (UC)

Cell: E15

Triangular distribution with parameters:

Minimum	$\$ 25$	$(=\$ F \$ 15)$
Likeliest	$\$ 33$	$(=\$ E \$ 15)$
Maximum	$\$ 40$	$(=\$ G \$ 15)$

Assumption: REMOVAL OF BRIDGES (UC)
Cell: E11

Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$\$ 30,000$	$(=\$ F \$ 11)$
$\$ 72,000$	$(=\$ E \$ 11)$
$\$ 100,000$	$(=\$ G \$ 11)$

Assumption: REMOVAL OF BUILDINGS (QF)

Triangular distribution with parameters:

Minimum	1.00	$(=\$ 1 \$ 12)$
Likeliest	1.00	$(=\$ H \$ 12)$
Maximum	1.50	$(=\$ \mathrm{~J} \$ 12)$

Assumption: REMOVAL OF BUILDINGS (UC)

Cell: E12

Triangular distribution with parameters:

Minimum	$\$ 25,000$	$(=\$ F \$ 12)$
Likeliest	$\$ 40,000$	$(=\$ E \$ 12)$
Maximum	$\$ 200,000$	$(=\$ G \$ 12)$

Assumption: REMOVAL OF PAVEMENT (UC)

Triangular distribution with parameters:

Minimum	$\$ 2.00$	$(=\$ F \$ 10)$
Likeliest	$\$ 3.00$	$(=\$ E \$ 10)$
Maximum	$\$ 10.00$	$(=\$ G \$ 10)$

Assumption: ROW - COMMUTER BUS (QF)

Triangular distribution with parameters:

Minimum	0.90	$(=\$ 1 \$ 73)$
Likeliest	1.00	$(=\$ H \$ 73)$
Maximum	1.10	$(=\$ \mathrm{~J} \$ 73)$

Assumption: ROW - COMMUTER BUS (UC)
Cell: E73

Triangular distribution with parameters:
Minimum
Likeliest
Maximum
\$3,690,000 (=\$F\$73)
\$4,100,000 (=\$E\$73)
$\$ 4,510,000 \quad(=\$ G \$ 73)$

Assumption: ROW - EXPRESS BUS (QF)
Cell: H72

Triangular distribution with parameters:
Minimum
Likeliest
Maximum
1.00 (=\$H\$72)
1.10 (=\$J\$72)

Assumption: ROW - EXPRESS BUS (UC)

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
\$10,530,000 (=\$F\$72)
\$11,700,000 (=\$E\$72)
$\$ 12,870,000 \quad(=\$ G \$ 72)$

Assumption: TENSIONED CABLE BARRIER (UC)

Cell: E19

Triangular distribution with parameters:

Minimum	$\$ 18$	$(=\$ F \$ 19)$
Likeliest	$\$ 20$	$(=\$ E \$ 19)$
Maximum	$\$ 25$	$(=\$ G \$ 19)$

Assumption: EARTHWORK - REGION 4 (UC)
Cell: E32

Student's t distribution with parameters:		
Midpoint	22.8%	$(=\$ E \$ 32)$
Scale	1.0%	
Deg. Freedom	2	

Selected range is from 15.0% to 30.0%

Assumption: EARTHWORK - REGION 6 (UC)
Student's t distribution with parameters:
Midpoint $\quad 5.1 \% \quad(=\$ E \$ 33)$
Scale
0.5\%

Deg. Freedom
Selected range is from 3.0% to 8.0%

Assumption: MOBILIZATION - REGION 4 (UC)

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
8.0\% (=\$F\$40)
11.0\% (=\$E\$40)
16.2\% (=\$G\$40)

Assumption: MOBILIZATION - REGION 6 (UC)

Student's t distribution with parameters:

Midpoint	7.1%	$(=\$ E \$ 41)$
Scale	0.5%	
Deg. Freedom	2	

Selected range is from 4.9% to 10.4%

Assumption: MSE WALL HEIGHT (0-10') (QF)

Cell: H26
OPPORTUNITIES: design level, some historic properties may not be an issue in the future, quantities account for potential ponds along corridor, did not include tiered walls, quantities tied to opportunities to purchase ROW

THREATS: design level, development along corridor, drainage crossings

Triangular distribution with parameters:
Minimum
$0.70 \quad(=\$ 1 \$ 26)$
Likeliest
1.00 (=\$H\$26)

Maximum
1.10 (=\$J\$26)

Assumption: MSE WALL HEIGHT (0-10') (UC)

Cell: E26

Triangular distribution with parameters:

Minimum	$\$ 190$	$(=\$ F \$ 26)$
Likeliest	$\$ 210$	$(=\$ E \$ 26)$
Maximum	$\$ 220$	$(=\$ G \$ 26)$

Assumption: MSE WALL HEIGHT (10-20') (QF)

OPPORTUNITIES: design level, some historic properties may not be an issue in the future, quantities account for potential ponds along corridor, did not include tiered walls, quantities tied to opportunities to purchase ROW

THREATS: design level, development along corridor, drainage crossings

Triangular distribution with parameters:

Minimum	0.70	$(=\$ 1 \$ 27)$
Likeliest	1.00	$(=\$ H \$ 27)$
Maximum	1.10	$(=\$ J \$ 27)$

Assumption: MSE WALL HEIGHT (10-20') (UC)
Cell: E27
OPPORTUNTIES: market conditions, 5-20\% design level
THREATS: market conditions, 5-20\% design level

Triangular distribution with parameters:

Minimum	$\$ 560$	$(=\$$ F\$27)
Likeliest	$\$ 690$	$(=\$ E \$ 27)$
Maximum	$\$ 750$	$(=\$ \mathbf{} 27)$

Assumption: MSE WALL HEIGHT (20'+) (QF)
Cell: H28
OPPORTUNITIES: design level, some historic properties may not be an issue in the future, quantities account for potential ponds along corridor, did not include tiered walls, quantities tied to opportunities to purchase ROW

THREATS: design level, development along corridor, drainage crossings

Triangular distribution with parameters:

Appendix C North I-25 CER REPORT - no schedule variability.xIsx

Minimum	0.70	$(=\$ 1 \$ 28)$
Likeliest	1.00	$(=\$ H \$ 28)$
Maximum	1.10	$(=\$ \mathrm{~J} \$ 28)$

Assumption: MSE WALL HEIGHT (20'+) (QF) (cont'd)

Cell: H28

Assumption: MSE WALL HEIGHT (20'+) (UC)

OPPORTUNTIES: market conditions, $5-20 \%$ design level
THREATS: market conditions, $5-20 \%$ design level

Triangular distribution with parameters:

Minimum	$\$ 1,340$	$(=\$ F \$ 28)$
Likeliest	$\$ 1,760$	$(=\$ E \$ 28)$
Maximum	$\$ 1,900$	$(=\$ G \$ 28)$

Assumption: Assumed Construction Unit Cost Rate of Escalation:
Cell: D3

CO Escalation Rates
CDOT: 3.3% based on CCI (average of cumulative average of inflation since 1987)
NFR: 3.0% used for revenue and construction projection
DRGOG/OFMB: 3.3 \% used for revenue projection, applied annually
RTD: 3.3-3.8\%
US36 CER: 3.8%; $\min =3.0 \%$ \& $\max =4.6 \%$
Threats: Other large projects in area, FastTracks, CDOT, material shortages, ie steel, asphalt, cement. More stimulous money may decrease competition. Availability of skilled workforce.

Opportunities: Continued low prices,

Triangular distribution with parameters:

Appendix C North I-25 CER REPORT - no schedule variability.xlsx

Assumption: Assumed ROW Unit Cost Rate of Escalation:

Based on data such as home price index from 1970 to 2010, assessor's office
5\% escalation annually
Range of 4-7\%
THREATS: Transitional development along corridor, i.e. agricultural (7 K to $10 \mathrm{~K} / \mathrm{acre}$) to industrial/residential (\$7/sf)
OPPORTUNITIES: Land-use planning, stabilization of ROW market, ROW preservation

Triangular distribution with parameters:

Minimum	4.00%	
Likeliest	5.00%	$(=\$ D \$ 4)$
Maximum	6.00%	

Assumption: BUS MAINTENANCE FACILITY (UC)

Based on detailed breakdown with unit cost from other facilities

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
\$14,205,200 (=\$F\$62)
\$16,700,000 (=\$E\$62)
$\$ 16,700,000 \quad(=\$ G \$ 62)$

Not for commuter rail or express lots, solely existing or new park and ride lots - 5 locations Based on historical data from RTD

OPPORTUNITIES: more usage of commuter rail lots
THREATS: less usage of commuter rail lots, development in corridor

Triangular distribution with parameters:

Minimum	$\$ 3,600,000$	$(=\$ F \$ 43)$
Likeliest	$\$ 4,460,000$	$(=\$$ E\$43)
Maximum	$\$ 5,400,000$	$(=\$ G \$ 43)$

Assumption: COMMUTER BUS STATIONS (UC)

Average of cost of different types/sized stations
Based on RTD West corridor/Southwest Corridor extension projects and RTD 2010 Program Review cost

OPPORTUNITIES: market conditions, lower bid prices, cost sharing with local agencies, ROW available for larger surface lots

THREATS: level of security, increased ridership, timeframe of ridership model (only modeled to 2035)

Triangular distribution with parameters:

Minimum	$\$ 3,328,000$	$(=\$ F \$ 58)$
Likeliest	$\$ 4,160,000$	$(=\$ E \$ 58)$
Maximum	$\$ 5,616,000$	$(=\$ 6 \$ 58)$

Triangular distribution with parameters:

Appendix C North I-25 CER REPORT - no schedule variability.xIsx

Minimum
Likeliest
$0.90 \quad(=\$ 1 \$ 75)$
Maximum
$1.00 \quad(=\$ \mathrm{H} \$ 75)$

-Assumed 40' coach style bus
-Cost based on RTD Annual Program Review
-Assumes 3-5\% range; High range based on APTA report of average bus costs

Triangular distribution with parameters:
Minimum
Likeliest
Maximum

$\$ 358,100$	$(=\$ F \$ 75)$
$\$ 376,000$	$(=\$ E \$ 75)$
$\$ 383,800$	$(=\$ G \$ 75)$

Assumption: COMMUTER RAIL - SUBTOTAL BASE COMMUNICATION SYSTEM (QF)Cell: H93

Related to quantity changes in trackwork
OPPORTUNITIES: 20-30\% design level
THREATS: 20-30\% design level, no final agreement with BNSF, ROW issues

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
0.95 (=\$1\$93)
1.00 (=\$H\$93)
1.05 (=\$J\$93)

Assumption: COMMUTER RAIL - SUBTOTAL BASE COMMUNICATION SYSTEM (UC)Cell: E93

Includes for all communications along track
Cost based on cost on similar projects in the U.S.

OPPORTUNITIES: Will need to tie-in to systems to the south of corridor/BSNF, technology advances

THREATS: Will need to tie-in to systems to the south of corridor/BSNF

Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$\$ 892,000$	$(=\$ F \$ 93)$
$\$ 1,500,000$	$(=\$ E \$ 93)$
$\$ 1,762,780$	$(=\$ G \$ 93)$

Assumption: COMMUTER RAIL - SUBTOTAL RURAL FENCE (QF)

Cell: H96

Related to quantity changes in trackwork
OPPORTUNITIES: 20-30\% design level

THREATS: 20-30\% design level, no final agreement with BNSF, ROW issues

Triangular distribution with parameters:
Minimum
0.95 (=\$I\$96)

Likeliest
Maximum
1.00 (=\$H\$96)
1.05 (=\$J\$96)

OPPORTUNITIES: 20-30\% design level, type of fence, location of fence (rural vs. urban)
THREATS: 20-30\% design level, type of fence, location of fence (rural vs. urban)

Triangular distribution with parameters:		
\quad Minimum	$\$ 3$	$(=\$ F \$ 96)$
Likeliest	$\$ 5$	$(=\$ E \$ 96)$
Maximum	$\$ 16$	$(=\$ G \$ 96)$

Assumption: COMMUTER RAIL - SUBTOTAL 13' GRAVEL ACCESS ROAD (QF)
Related to quantity changes in trackwork
OPPORTUNITIES: 20-30\% design level
THREATS: 20-30\% design level, no final agreement with BNSF, ROW issues

Triangular distribution with parameters:

Minimum	0.95	$(=\$ 1 \$ 91)$
Likeliest	1.00	$(=\$ H \$ 91)$
Maximum	1.05	$(=\$ \mathrm{~J} \$ 91)$

Assumption: COMMUTER RAIL - SUBTOTAL 13' GRAVEL ACCESS ROAD (UC)
Cell: E91

Includes 12" surface of access road

THREATS: market conditions, haul distances

OPPORTUNITIES: material extension of subballast

Triangular distribution with parameters:
Minimum
\$15 (=\$F\$91)
Likeliest
\$20 (=\$E\$91)
Maximum

Assumption: COMMUTER RAIL - SUBTOTAL COMMUTER RAIL ACTIVATION \& TESTI\&\&|(道95

Standard testing in the industry
Based on size of the facility

OPPORTUNITIES: number of construction phases

THREATS: number of construction phases

Triangular distribution with parameters:
Minimum
\$1,500,000 (=\$F\$95)
Likeliest
\$2,000,000 (=\$E\$95)

Maximum
$\$ 3,500,000 \quad$ (=\$G\$95)

Assumption: COMMUTER RAIL - SUBTOTAL COMMUTER RAIL BRIDGE - span <140' OredicE80

-Based on RTD historical cost data
-Two commuter rail projects recently awarded by RTD

OPPORTUNITIES: 20-30\% design level, new technology, lighter track, new alignment
THREATS: 20-30\% design level, complexity of bridge design, new alignment, roadway and water crossings

Triangular distribution with parameters:

Minimum	$\$ 90$	$(=\$ F \$ 80)$
Likeliest	$\$ 180$	$(=\$ E \$ 80)$
Maximum	$\$ 220$	$(=\$ G \$ 80)$

Assumption: COMMUTER RAIL - SUBTOTAL COMMUTER RAIL BRIDGE - span >140' ©aellwE81

-Based on RTD historical cost data
-Two commuter rail projects recently awarded by RTD
OPPORTUNITIES: 20-30\% design level, new technology, lighter track, new alignment
THREATS: 20-30\% design level, complexity of bridge design, new alignment, roadway and water crossings

Triangular distribution with parameters:

Minimum	$\$ 115$	$(=\$ F \$ 81)$
Likeliest	$\$ 220$	$(=\$ E \$ 81)$
Maximum	$\$ 285$	$(=\$ G \$ 81)$

Assumption: COMMUTER RAIL - SUBTOTAL CONSTRUCTION MANAGEMENT (U@
Triangular distribution with parameters:

Minimum	11.0%	$(=\$ F \$ 113)$
Likeliest	15.0%	$(=\$ E \$ 113)$
Maximum	24.0%	$(=\$ G \$ 113)$

Assumption: COMMUTER RAIL - SUBTOTAL DESIGN (UC)
Cell: E112
THREATS: BSNF design/review process
OPPORTUNITIES: BSNF design/review process

Triangular distribution with parameters:

Minimum	6.0%	$(=\$ F \$ 112)$
Likeliest	8.8%	$(=\$ E \$ 112)$
Maximum	10.0%	$(=\$ G \$ 112)$

Appendix C North I-25 CER REPORT - no schedule variability.xlsx

OPPORTUNITIES: 20-30\% design level
THREATS: 20-30\% design level, no final agreement with BNSF, ROW issues

Triangular distribution with parameters:
Minimum
0.95 (=\$1\$87)

Likeliest
1.00 (=\$H\$87)

Maximum
1.05 (=\$J\$87)

Assumption: COMMUTER RAIL - SUBTOTAL SINGLE BALLASTED TRACK (QF)
Cell: H88
OPPORTUNITIES: 20-30\% design level
THREATS: 20-30\% design level, no final agreement with BNSF, ROW issues

Triangular distribution with parameters:

Minimum	0.95	$(=\$ 1 \$ 88)$
Likeliest	1.00	$(=\$ H \$ 88)$
Maximum	1.05	$(=\$ J \$ 88)$

Assumption: COMMUTER RAIL - SUBTOTAL MSE WALL HEIGHT (0-10') (QF)
Cell: H83
OPPORTUNITIES: design level, some historic properties may not be an issue in the future, quantities account for potential ponds along corridor, did not include tiered walls, quantities tied to opportunities to purchase ROW

THREATS: design level, development along corridor, drainage crossings

Triangular distribution with parameters:

Minimum	0.70	$(=\$ 1 \$ 83)$
Likeliest	1.00	$(=\$ H \$ 83)$
Maximum	1.10	$(=\$ J \$ 83)$

Assumption: COMMUTER RAIL - SUBTOTAL MSE WALL HEIGHT (0-10') (QF) (cont'd) Cell: H83

Assumption: COMMUTER RAIL - SUBTOTAL MSE WALL HEIGHT (0-10') (UC)

Cell: E83

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
$\$ 190 \quad$ (=\$F\$83)
\$210 (=\$E\$83)
\$220 (=\$G\$83)

Assumption: COMMUTER RAIL - SUBTOTAL MSE WALL HEIGHT (10-20') (QF)
Cell: H84

OPPORTUNITIES: design level, some historic properties may not be an issue in the future, quantities account for potential ponds along corridor, did not include tiered walls, quantities tied to opportunities to purchase ROW

THREATS: design level, development along corridor, drainage crossings

Triangular distribution with parameters:

Minimum	0.70	$(=\$ 1 \$ 84)$
Likeliest	1.00	$(=\$ H \$ 84)$
Maximum	1.10	$(=\$ \mathrm{~J} \$ 84)$

Triangular distribution with parameters:

Minimum	$\$ 560$	$(=\$ F \$ 84)$
Likeliest	$\$ 690$	$(=\$ E \$ 84)$
Maximum	$\$ 750$	$(=\$ G \$ 84)$

Assumption: COMMUTER RAIL - SUBTOTAL MSE WALL HEIGHT (20'+) (QF)
Cell: H85

OPPORTUNITIES: design level, some historic properties may not be an issue in the future, quantities account for potential ponds along corridor, did not include tiered walls, quantities tied to opportunities to purchase ROW

THREATS: design level, development along corridor, drainage crossings

Triangular distribution with parameters:

Minimum
Likeliest
Maximum

```
0.70 (=$I$85)
1.00 (=$H$85)
1.10 (=$J$85)
```


Assumption: COMMUTER RAIL - SUBTOTAL MSE WALL HEIGHT (20'+) (UC)
Cell: E85

Triangular distribution with parameters:

Minimum	$\$ 1,340$	$(=\$ F \$ 85)$
Likeliest	$\$ 1,760$	$(=\$ E \$ 85)$
Maximum	$\$ 1,900$	$(=\$ G \$ 85)$

Assumption: COMMUTER RAIL - SUBTOTAL AT GRADE CROSSING (QF)
Cell: H97
OPPORTUNITIES: $20-30 \%$ design level
THREATS: 20-30\% design level, additional request from locals

Triangular distribution with parameters:
Minimum
0.95 (=\$1\$97)

Likeliest
Maximum
1.00 (=\$H\$97)
1.25 (=\$J\$97)

Assumption: COMMUTER RAIL - SUBTOTAL AT GRADE CROSSING (UC)
Average of different types of crossing
OPPORTUNITIES: quiet zones not implemented
THREATS: existing roadway widened

Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$$
\begin{array}{ll}
\$ 112,400 & (=\$ \mathrm{~F} \$ 97) \\
\$ 137,000 & (=\$ \mathrm{E} \$ 97) \\
\$ 174,840 & (=\$ \mathrm{G} \$ 97)
\end{array}
$$

Assumption: COMMUTER RAIL - SUBTOTAL COMMUTER RAIL ROW (QF)
Triangular distribution with parameters:

Minimum
Likeliest
Maximum
0.90 (=\$1\$114)
1.00 (=\$H\$114)
1.10 (=\$J\$114)

Appendix C North I-25 CER REPORT - no schedule variability.xIsx

Assumption: COMMUTER RAIL - SUBTOTAL COMMUTER RAIL STATIONS (UC)
Average of cost of different types/sized stations
Based on RTD West corridor/Southwest Corridor extension projects and RTD 2010 Program Review cost

OPPORTUNITIES: market conditions, lower bid prices, cost sharing with local agencies, ROW available for larger surface lots

THREATS: level of security, increased ridership, timeframe of ridership model (only modeled to 2035)

Triangular distribution with parameters:

Minimum
Likeliest Maximum

$$
\begin{array}{ll}
\$ 26,400,000 & (=\$ F \$ 104) \\
\$ 33,000,000 & (=\$ E \$ 104) \\
\$ 44,550,000 & (=\$ G \$ 104)
\end{array}
$$

Assumption: COMMUTER RAIL - SUBTOTAL CONSTRUCTION TRAFFIC CONTROL (UC)ell: E101

Triangular distribution with parameters:

Minimum	3.0%	$(=\$ F \$ 101)$
Likeliest	6.0%	$(=\$ E \$ 101)$
Maximum	10.0%	$(=\$ G \$ 101)$

Assumption: COMMUTER RAIL - SUBTOTAL DMU VEHICLES (QF)
Cell: H116

Triangular distribution with parameters:

Minimum	0.90	$(=\$ 1 \$ 116)$
Likeliest	1.00	$(=\$ \mathrm{H} 116)$
Maximum	1.10	$(=\$ \mathrm{~J} \$ 116)$

Appendix C North I-25 CER REPORT - no schedule variability.xIsx

0.80	0.32	094	0*	0.00	1.00	102	106	100	109

-Assumes cost of single track and maintenance road; based on alignment for trackline -Percentage of trackwork cost

OPPORTUNITIES: 15-20\% design level, soft soils - proximity to major rivers, haul distances, material suitability, unknown borrow sources

THREATS: 15-20\% design level, changes in BNSF requirements, no final agreements in place with BNSF, material suitability, major aggregates supplies in project area

Triangular distribution with parameters:

Minimum	15.0%	$(=\$ F \$ 78)$
Likeliest	20.0%	$(=\$ E \$ 78)$
Maximum	30.0%	$(=\$ G \$ 78)$

Assumption: COMMUTER RAIL - SUBTOTAL EARTHWORK (UC) (E87)
Cell: E87
-Based on RTD 2010 Program review
-Includes cost for all track items from subgrade
OPPORTUNITIES: changes to FTA/FRA requirements, market conditions - steel/concrete prices

THREATS: changes to FTA/FRA requirements, market conditions - steel/concrete prices

Triangular distribution with parameters:

Minimum	$\$ 0$	$(=\$ F \$ 78)$
Likeliest	$\$ 0$	$(=\$ E \$ 78)$
Maximum	$\$ 0$	$(=\$ G \$ 78)$

Assumption: COMMUTER RAIL - SUBTOTAL EARTHWORK (UC) (E88)
Cell: E88
-Based on RTD 2010 Program review
-Includes cost for all track items from subgrade
OPPORTUNITIES: changes to FTA/FRA requirements, market conditions - steel/concrete prices

THREATS: changes to FTA/FRA requirements, market conditions - steel/concrete prices

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
\$0 (=\$F\$78)
\$0 (=\$E\$78)
\$0 (=\$G\$78)

Assumption: COMMUTER RAIL - SUBTOTAL EARTHWORK (UC) (E89)
Cell: E89
Triangular distribution with parameters:

Minimum
Likeliest
Maximum
\$0 (=\$F\$78)
\$0 (=\$E\$78)
\$0 (=\$G\$78)

Assumption: COMMUTER RAIL - SUBTOTAL FEEDER BUS VEHICLES (QF)
Cell: H115
Triangular distribution with parameters:

Minimum
Likeliest
Maximum
0.90 (=\$1\$115)
1.00 (=\$H\$115)
1.10 (=\$J\$115)

Appendix C North I-25 CER REPORT - no schedule variability.xIsx

Assumption: COMMUTER RAIL - SUBTOTAL INSURANCE LEGAL (UC)
Includes contractor's bonding and legal cost
Based on West Corridor project cost
Owner Controlled Insurance (OCIP)

OPPORTUNITIES: contractor's bonding ratings, type of procurement
THREATS: contractor's bonding ratings, type of procurement

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
2.0\% (=\$F\$107)
3.0\% (=\$E\$107)
4.0\% (=\$G\$107)

Assumption: COMMUTER RAIL - SUBTOTAL MAINTENANCE \& OPERATIONS FACILITC@UC年105

Used estimate M\&O facility in California as a template Min/Max based on including different characteristics of facility

OPPORTUNITIES: design level, estimate does not use local cost
THREATS: design level, estimate does not use local cost

Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$\$ 41,963,200$	$(=\$ F \$ 105)$
$\$ 56,900,000$	$(=\$ E \$ 105)$
$\$ 64,946,300$	$(=\$ G \$ 105)$

\$56,900,000 (=\$E\$105)
\$64,946,300 (=\$G\$105)

Assumption: COMMUTER RAIL - SUBTOTAL MISCELLANEOUS BID ITEMS (UC)

Includes structural fill, electrical conduit, public information, landscaping

Triangular distribution with parameters:

Minimum	5.0%	$(=\$ F \$ 103)$
Likeliest	10.0%	$(=\$ E \$ 103)$
Maximum	20.0%	$(=\$ G \$ 103)$

Assumption: COMMUTER RAIL - SUBTOTAL MISCELLANEOUS BID ITEMS (UC) (cont'đ)ell: E103

Assumption: COMMUTER RAIL - SUBTOTAL MOBILIZATION (UC)
Triangular distribution with parameters:

Minimum	10.0%	$(=\$ F \$ 102)$
Likeliest	15.0%	$(=\$ E \$ 102)$
Maximum	18.0%	$(=\$ G \$ 102)$

Assumption: COMMUTER RAIL - SUBTOTAL NOISE AND VIBRATION (UC)
Cell: E99

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
1.0\% (=\$F\$99)
2.0\% (=\$E\$99)
4.0\% (=\$G\$99)

Assumption: COMMUTER RAIL - SUBTOTAL NOISE AND VIBRATION (UC) (E98)
Cell: E98
-Based on RTD cost for Northwest Corridor
-Percentage of quantified commuter rail construction cost

Triangular distribution with parameters:

Minimum	3.0%	$(=\$ F \$ 98)$
Likeliest	7.0%	$(=\$ E \$ 98)$
Maximum	10.0%	$(=\$ G \$ 98)$

Assumption: COMMUTER RAIL - SUBTOTAL SIGNING AND STRIPING (UC)
Cell: E100

Triangular distribution with parameters:

Minimum	0.5%	$(=\$ F \$ 100)$
Likeliest	1.0%	$(=\$ E \$ 100)$
Maximum	1.5%	$(=\$ G \$ 100)$

Assumption: COMMUTER RAIL - SUBTOTAL UNFORESEEN CONDITIONS (UC)
Cell: E106

OPPORTUNITIES: Lessons learned from current RTD projects, unknown operator/owner (RTD?)

THREATS: No final agreements with BSNF, coordination issues with BSNF and existing RTD commuter rail, unknown operator/owner (RTD?), less tolerance in rail construction, subsurface issues/conditions, hazardous materials on existing rail line, 60-year horizon for construction of commuter rail (30 years until 1st project starts construction), abondoned mines

Triangular distribution with parameters:

Minimum	0.0%	$(=\$ F \$ 106)$
Likeliest	5.0%	$(=\$ E \$ 106)$
Maximum	5.0%	$(=\$ G \$ 106)$

Appendix C North I-25 CER REPORT - no schedule variability.xlsx

Assumption: COMMUTER RAIL - SUBTOTAL UTILITIES (UC)

Based on Northwest Corridor project
Percentage of commuter rail construction cost
OPPORTUNITIES: portions on existing alignment
THREATS: portions of new alignment, possibly parallel utilites in existing RR ROW

Triangular distribution with parameters:

Minimum	1.0%	$(=\$ F \$ 108)$
Likeliest	3.0%	$(=\$ E \$ 108)$
Maximum	10.0%	$(=\$ G \$ 108)$

Assumption: CONSTRUCTION TRAFFIC CONTROL (UC)

Includes detour pavement, flagging, traffic control management, temporary signing, TCD, temporary concrete barrier

OPPORTUNITIES: contract phasing, larger projects w/ less crossovers, complete closures of interchanges with vertical alignment changes

THREATS: contract phasing, smaller projects with more crossovers, separating mainline and interchange contracts

Student's t distribution with parameters:

Midpoint
Scale
Deg. Freedom

12.3\% (=\$E\$37)
 0.5\%
 5

Selected range is from 5.0% to 14.0%

Includes all crossing items, water quality ponds, pipe, culverts, riprap, manholes, inlets, trash guards

OPPORTUNITIES: very low level complexity (typical project), 20-30\% design level, new technology such as stormwater vault systems, less ROW with vault systems

THREATS: $20-30 \%$ design level, no utility information, areas in Region 4 will become MS4 areas in future

Student's t distribution with parameters:

Midpoint	10.7%	$(=\$ E \$ 34)$
Scale	0.5%	
Deg. Freedom	5	

Selected range is from 8.0% to 12.0%

Assumption: EROSION CONTROL (UC)

Cell: E35
-Includes items such as topsoil, silt fence, sediment basins, seeding, mulching, soil retention blankets, erosion control supervisor
-Percentage of quantified items
-Historical projects were prior to consent decree
THREATS: Additional EPA regulations
OPPORTUNITIES: New direction at CDOT Environmental Programs Branch (EPB), BMP improvements/advances

Triangular distribution with parameters:

Minimum	3.0%	$(=\$ F \$ 35)$
Likeliest	5.0%	$(=\$ E \$ 35)$
Maximum	7.5%	$(=\$ G \$ 35)$

Appendix C North I-25 CER REPORT - no schedule variability.xIsx

Page 52

Average of cost of different types/sized stations
Based on RTD West corridor/Southwest Corridor extension projects and RTD 2010 Program Review cost

OPPORTUNITIES: market conditions, lower bid prices, cost sharing with local agencies, ROW available for larger surface lots

THREATS: level of security, increased ridership, timeframe of ridership model (only modeled to 2035)

Triangular distribution with parameters:

Minimum	$\$ 34,000,000$	$(=\$ F \$ 57)$
Likeliest	$\$ 42,500,000$	$(=\$ E \$ 57)$
Maximum	$\$ 57,375,000$	$(=\$ G \$ 57)$

Assumption: EXPRESS BUS VEHICLES (QF)

Cell: H74
Ridership based on 2035
OPPORTUNITIES:
THREATS: development/growth in corridor

Triangular distribution with parameters:

Minimum	0.90	$(=\$ 1 \$ 74)$
Likeliest	1.00	$(=\$ H \$ 74)$
Maximum	1.10	$(=\$ J \$ 74)$

-Assumed 40' coach style bus
-Cost based on RTD Annual Program Review
-Assumes 3-5\% range; High range based on APTA report of average bus costs

Triangular distribution with parameters:

Minimum
Likeliest Maximum
\$358,100 (=\$F\$74)
\$376,000 (=\$E\$74)
\$383,800 (=\$G\$74)

Assumption: EXPRESS BUS, COMMUTER BUS - SUBTOTAL CONSTRUCTION MANAGEME70

Triangular distribution with parameters:

Minimum	10.0%	$(=\$ F \$ 70)$
Likeliest	17.0%	$(=\$ E \$ 70)$
Maximum	24.0%	$(=\$ G \$ 70)$

Assumption: EXPRESS BUS, COMMUTER BUS - SUBTOTAL DESIGN
Cell: E69

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
6.0\% (=\$F\$69)
8.8\% (=\$E\$69)
$11.0 \% \quad$ (=\$G\$69)

Assumption: I-25 GENERAL PURPOSE, TOLLED EXPRESS LANES, CARPOOL LOTS - C6D.NE52

OPPORTUNITIES: using CDOT forces, D-B contracting, larger projects may be CE exemption THREATS:

Triangular distribution with parameters:

Minimum
Likeliest Maximum
$12.0 \% \quad$ (=\$F\$52)
17.0\% (=\$E\$52)
24.0\% (=\$G\$52)

Assumption: I-25 GENERAL PURPOSE, TOLLED EXPRESS LANES, CARPOOL LOTS - CRESE51
Includes phased ROD updates
OPPORTUNITIES: D-B contracting
THREATS: reorganization of project phasing, construction management, funding availability/schedule delay

Triangular distribution with parameters:
Minimum
6.0\% (=\$F\$51)

Likeliest
8.8\% (=\$E\$51)

Maximum

Assumption: INTELLIGENT TRANSPORTATION SYSTEM ELEMENTS (UC)
Includes LED VMS, CCTV, weather station

THREATS: new technology, decreased spacing of signs
OPPORTUNITIES: new technology

Triangular distribution with parameters:

Minimum	$\$ 160,000$	$(=\$ F \$ 44)$
Likeliest	$\$ 169,000$	$(=\$ E \$ 44)$
Maximum	$\$ 200,000$	$(=\$ G \$ 44)$

Assumption: LIGHTING (UC)

Triangular distribution with parameters:

Minimum	1.0%	$(=\$ F \$ 30)$
Likeliest	1.7%	$(=\$ E \$ 30)$
Maximum	2.0%	$(=\$ G \$ 30)$

Assumption: MANAGED LANE SYSTEM (UC)

-Includes items such as electronic equipment, cabinets, power supply, cameras related to the managed lane system
-Based on historical national data from Wilbur Smith

OPPORTUNITIES: new technology

THREATS: costs based mainly on East Coast projects, new technology

Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$\$ 150,000$	$(=\$ F \$ 45)$
$\$ 180,000$	$(=\$ E \$ 45)$
$\$ 300,000$	$(=\$ G \$ 45)$

Includes items such as sandblasting, blading, resetting items, health and safety officers, solid waste disposal, geotextile items, fencing, curb and gutter, electrical conduit, rumble strips, traffic attenuators, field office, surveying, public information

THREATS: $5-20 \%$ design level, character of work could change and cause increase to miscellaneous items

OPPORTUNITIES: 5-20\% design level, cost already included in estimate

Uniform distribution with parameters:

Minimum	7.0%	$(=\$ F \$ 42)$
Maximum	8.0%	$(=\$ G \$ 42)$

Assumption: MISCELLANEOUS BID ITEMS (UC)

Cell: E61
Triangular distribution with parameters:

Minimum	5.0%	$(=\$ F \$ 61)$
Likeliest	8.8%	$(=\$ E \$ 61)$
Maximum	20.0%	$(=\$ G \$ 61)$

Assumption: MOBILIZATION (UC)
Cell: E60
Triangular distribution with parameters:

Minimum	5.0%	$(=\$ F \$ 60)$
Likeliest	11.0%	$(=\$ E \$ 60)$
Maximum	18.0%	$(=\$ G \$ 60)$

Assumption: ROW - COMMUTER RAIL ROW (UC)

Includes cost for removal of structures

Triangular distribution with parameters:

Minimum	$\$ 23,760,000$	$(=\$ F \$ 114)$
Likeliest	$\$ 26,400,000$	$(=\$ E \$ 114)$
Maximum	$\$ 29,040,000$	$(=\$ G \$ 114)$

Assumption: ROW - DMU VEHICLES (UC)

Based on RTD Annual Program Review
Range based on Nationwide review of costs (Jacobs)

THREATS: Current design has not received FRA approval, Changes in FRA regulations OPPORTUNITIES:

Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$\$ 3,600,000$	$(=\$ F \$ 116)$
$\$ 5,200,000$	$(=\$ E \$ 116)$
$\$ 7,000,000$	$(=\$ G \$ 116)$

\$7,000,000 (=\$G\$116)

Assumption: ROW - FEEDER BUS VEHICLES (UC)

Cost based on RTD Program Review
Maximum is based on nationwide (APTA) cost of buses

Triangular distribution with parameters:

Minimum
Likeliest
\$288,600 (=\$F\$115)
\$300,000 (=\$E\$115)

Assumption: ROW - Harmony Interchange (QF)

Triangular distribution with parameters:

Minimum	0.90	$(=\$ 1 \$ 134)$
Likeliest	1.00	$(=\$ H \$ 134)$
Maximum	1.10	$(=\$ J \$ 134)$

Assumption: ROW - Harmony Interchange (UC)

Cell: E134

Triangular distribution with parameters:

Minimum	$\$ 2,421,000$	$(=\$ F \$ 134)$
Likeliest	$\$ 2,690,000$	$(=\$ E \$ 134)$
Maximum	$\$ 2,959,000$	$(=\$ G \$ 134)$

Assumption: ROW - l-25 (2 GP + aux. lanes) from SH 392 to Prospect (excluding HacebnM128

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
$0.90 \quad(=\$ 1 \$ 128)$
1.00 (=\$H\$128)
1.10 (=\$J\$128)

Assumption: ROW - I-25 (2 GP + aux. lanes) from SH 392 to Prospect (excluding Hacrbib128

Assumption: ROW - I-25 (2 GP + aux. lanes) from SH 392 to Prospect (excluding HawednE128
Triangular distribution with parameters:
Minimum
Likeliest
Maximum

$$
\begin{array}{ll}
\$ 7,146,000 & (=\$ F \$ 128) \\
\$ 7,940,000 & (=\$ E \$ 128) \\
\$ 8,734,000 & (=\$ G \$ 128)
\end{array}
$$

Assumption: ROW - I-25 (2 GP lanes) from SH 14 to SH 1 (QF)
Cell: H133
Triangular distribution with parameters:
Minimum
0.90 (=\$I\$133)

Likeliest
Maximum
1.00 (=\$H\$133)
1.10 (=\$J\$133)

Assumption: ROW - I-25 (2 GP lanes) from SH 14 to SH 1 (UC)
Cell: E133
Triangular distribution with parameters:

Minimum	$\$ 4,824,000$	$(=\$ F \$ 133)$
Likeliest	$\$ 5,360,000$	$(=\$ E \$ 133)$
Maximum	$\$ 5,896,000$	$(=\$ G \$ 133)$

Assumption: ROW - I-25 (3 GP + 1 TEL) from US 36 to 120th Avenue (QF)
Cell: H123

Triangular distribution with parameters:

Minimum	0.90	$(=\$ 1 \$ 123)$
Likeliest	1.00	$(=\$ H \$ 123)$
Maximum	1.10	$(=\$ J \$ 123)$

Assumption: ROW - I-25 (3 GP + 1 TEL) from US 36 to 120th Avenue (UC)
Cell: E123

Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$$
\begin{array}{ll}
\$ 5,058,000 & (=\$ F \$ 123) \\
\$ 5,620,000 & (=\$ E \$ 123) \\
\$ 6,182,000 & (=\$ G \$ 123)
\end{array}
$$

Assumption: ROW - I-25 (3 GP + 1 TEL) from 120th Avenue to SH 7 (QF)
Cell: H131

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
$0.90 \quad$ (=\$1\$131)
1.00 (=\$H\$131)
1.10 (=\$J\$131)

Assumption: ROW - I-25 (3 GP + 1 TEL) from 120th Avenue to SH 7 (UC)
Cell: E131
Triangular distribution with parameters:
Minimum

$\$ 5,652,000$	$(=\$ F \$ 131)$
$\$ 6,280,000$	$(=\$ E \$ 131)$
$\$ 6,908,000$	$(=\$ G \$ 131)$

Assumption: ROW - I-25 (3 GP) from SH 56 to SH 392 (QF)
Cell: H132
Triangular distribution with parameters:

Minimum
Likeliest
Maximum
0.90 (=\$1\$132)
1.00 (=\$H\$132)
1.10 (=\$J\$132)

Assumption: ROW - I-25 (3 GP) from SH 56 to SH 392 (UC)
Cell: E132
Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$\$ 25,650,000$	$(=\$ F \$ 132)$
$\$ 28,500,000$	$(=\$ E \$ 132)$
$\$ 31,350,000$	$(=\$ G \$ 132)$

Assumption: ROW - I-25 (3 GP) from SH 66 to WCR 38 (including WCR 34 interchangeq60fH125
Triangular distribution with parameters:

Minimum	0.90	$(=\$ 1 \$ 125)$
Likeliest	1.00	$(=\$ H \$ 125)$
Maximum	1.10	$(=\$ J \$ 125)$

Assumption: ROW - I-25 (3 GP) from SH 66 to WCR 38 (including WCR 34 interchangeథ ©uCE 125
Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$$
\begin{array}{ll}
\$ 3,276,000 & (=\$ F \$ 125) \\
\$ 3,640,000 & (=\$ E \$ 125) \\
\$ 4,004,000 & (=\$ G \$ 125)
\end{array}
$$

Assumption: ROW - I-25 (3 GP) from WCR 38 to SH 56 (excluding SH 56 interchange) (C\&B) H126
Triangular distribution with parameters:

Minimum
Likeliest
Maximum
0.90 (=\$1\$126)
1.00 (=\$H\$126)
1.10 (=\$J\$126)

Assumption: ROW - I-25 (3 GP) from WCR 38 to SH 56 (excluding SH 56 interchange) (eRA) ($\$ 126$

Assumption: ROW - I-25 (3 GP) from WCR 38 to SH 56 (excluding SH 56 interchange) (then) E126
Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$$
\begin{array}{ll}
\$ 1,107,000 & (=\$ F \$ 126) \\
\$ 1,230,000 & (=\$ E \$ 126) \\
\$ 1,353,000 & (=\$ G \$ 126)
\end{array}
$$

Assumption: ROW - I-25 (Add 1 TEL) from SH 7 to SH 14 (QF)
Cell: H136

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
$0.90 \quad$ (=\$1\$136)
1.00 (=\$H\$136)
1.10 (=\$J\$136)

Assumption: ROW - I-25 (Add 1 TEL) from SH 7 to SH 14 (UC)
Cell: E136

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
\$1,656,000 (=\$F\$136)
\$1,840,000 (=\$E\$136)
\$2,024,000 (=\$G\$136)

Assumption: ROW - ROW Phase 2 (QF)

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
0.90 (=\$1\$130)
1.00 (=\$H\$130)
1.10 (=\$J\$130)

Assumption: ROW - ROW Phase 2 (UC)

Cell: E130
Triangular distribution with parameters:

Minimum
Likeliest
Maximum

Assumption: ROW - ROW Phase 3 (QF)
Cell: H135
Triangular distribution with parameters:
Minimum
Likeliest
Maximum

Cell: H135

Cell: E135

Cell: H129
Triangular distribution with parameters:

Minimum
Likeliest
Maximum

```
    0.90 (=$|$129)
    1.00 (=$H$129)
    1.10 (=$J$129)
```


Assumption: ROW - SH 14 Interchange (UC)

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
\$2,448,000 (=\$F\$129)
\$2,720,000 (=\$E\$129)
\$2,992,000 (=\$G\$129)

Assumption: ROW - SH 56 Interchange (QF)

Triangular distribution with parameters:

Minimum	0.90	$(=\$ 1 \$ 127)$
Likeliest	1.00	$(=\$ H \$ 127)$
Maximum	1.10	$(=\$ \mathrm{~J} \$ 127)$

Assumption: ROW - SH 56 Interchange (UC)
Cell: E127

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
\$2,988,000 (=\$F\$127)
\$3,320,000 (=\$E\$127)
\$3,652,000 (=\$G\$127)

Assumption: ROW - SH 7 Par-clo Interchange (QF)
Cell: H124

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
$0.90 \quad(=\$ 1 \$ 124)$
1.00 (=\$H\$124)
1.10 (=\$J\$124)

Assumption: ROW - SH 7 Par-clo Interchange (UC)

Triangular distribution with parameters:

Minimum	$\$ 8,910,000$	$(=\$ F \$ 124)$
Likeliest	$\$ 9,900,000$	$(=\$ E \$ 124)$
Maximum	$\$ 10,890,000$	$(=\$ G \$ 124)$

Assumption: ROW - US 34 from Rocky Mtn. Avenue to LCR 5 (QF)

Cell: H137

Triangular distribution with parameters:

Minimum
Likeliest
Maximum

```
0.90 (=$1$137)
1.00 (=$H$137)
1.10 (=$J$137)
```


Assumption: ROW - US 34 from Rocky Mtn. Avenue to LCR 5 (UC)
Cell: E137

Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$\$ 17,910,000$	$(=\$ F \$ 137)$
$\$ 19,900,000$	$(=\$ E \$ 137)$
$\$ 21,890,000$	$(=\$ G \$ 137)$

Assumption: SIGNING AND STRIPING (UC)

Student's t distribution with parameters:
Midpoint $\quad 2.3 \% \quad$ (=\$E\$36)

Scale 0.5\%
Deg. Freedom
Selected range is from 1.0% to 3.0%

Assumption: TRAFFIC SIGNALS (RAMP TERMINAL INTERSECTION) (UC)

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
\$200,000 (=\$F\$46)
\$250,000 (=\$E\$46)
\$300,000 (=\$G\$46)

Includes cost of unknown unknowns
Percentage of construction cost
THREATS: potential for coal mine subsidence, 60-year horizon of project (scope creep)
OPPORTUNITIES: existing roadway, very low complexity project, no major issues with hazardous materials/historic properties anticipated due to completed studies, low chance of increasing scope of project, projects recently completed along corridor

Triangular distribution with parameters:

Minimum	0.0%	$(=\$ F \$ 48)$
Likeliest	1.0%	$(=\$ E \$ 48)$
Maximum	4.0%	$(=\$ G \$ 48)$

Assumption: UNFORESEEN CONDITIONS (UC)
THREATS: requirements of operating agency, requirements of locals, subsurface conditions, hazardous materials

OPPORTUNITIES: requirements of operating agency, construction in localized areas for queue jumps

Triangular distribution with parameters:

Minimum	0.0%	$(=\$ F \$ 66)$
Likeliest	1.0%	$(=\$ E \$ 66)$
Maximum	2.0%	$(=\$ G \$ 66)$

Student's t distribution with parameters: Midpoint
1.0\% (=\$E\$38)
Scale
0.5\%
Deg. Freedom 5

Selected range is from 0.5% to 2.0%

Assumption: UTILITIES (UC)
Cell: E49
-Percentage of total construction cost
-Includes cost for relocations, design
OPPORTUNITIES: no parallel utilities in ROW, most crossing utilities at interchanges, 5-20\% design level, access control limits the amount of utilities in interstate ROW

THREATS: 5-20\% design level, potentially more cost in urban sections of project, additonal utilities in the future

Triangular distribution with parameters:

Minimum	4.0%	$(=\$ F \$ 49)$
Likeliest	4.6%	$(=\$ E \$ 49)$
Maximum	5.0%	$(=\$ G \$ 49)$

Assumption: UTILITIES (UC)
Cell: E67
Based on construction in urban areas

Triangular distribution with parameters:

Minimum	5.0%	$(=\$ F \$ 67)$
Likeliest	7.0%	$(=\$ E \$ 67)$
Maximum	8.0%	$(=\$ G \$ 67)$

End of Assumptions

Appendix C North I-25 CER REPORT - no schedule variability.xIsx

Sensitivity Charts

End of Sensitivity Charts

Appendix D

CER Probability Analysis Report with Schedule Variability

THIS PAGE INTENTIONALLY LEFT BLANK.

Crystal Ball Report - Custom

Simulation started on 7/15/2010 at 12:28 PM Simulation stopped on 7/15/2010 at 12:29 PM
Run preferences:
Number of trials run
10,000
Extreme speed
Latin Hypercube (size) 500
Seed 999
Precision control on
Confidence level
95.00\%
Run statistics:
Total running time (sec)
26.58
Trials/second (average) 376
Random numbers per sec 57,946
Crystal Ball data:
Assumptions 154
Correlations 0
Correlated groups 0
Decision variables 0
Forecasts 4

Forecasts

Worksheet: [North_I-25 CER 7-14-2010pm - schedule variability FINAL.xIsx]Phase 1 (2009)

Forecast: Phase 1 (2009)
Summary:
Certainty level is 80.00%
Certainty range is from $\$ 633,608,000$ to $\$ 696,726,000$
Entire range is from $\$ 581,952,000$ to $\$ 773,320,000$
Base case is $\$ 640,997,000$
After 10,000 trials, the std. error of the mean is $\$ 247,512$

Statistics:	Forecast values
Trials	10,000
Base Case	$\$ 640,997,000$
Mean	$\$ 664,820,219$
Median	$\$ 664,066,500$
Mode	$\$ 642,914,000$
Standard Deviation	$\$ 24,751,233$
Variance	0.1949
Skewness	3.02
Kurtosis	0.0372
Coeff. of Variability	$\$ \# \# \# \# \# \# \# \# \# \# \# \# \# \# \#$
Minimum	$\$ 773,952,000$
Maximum	$\$ 191,368,000$
Range Width	$\$ 247,512$

Percentiles:	Forecast values
0%	$\$ 581,952,000$
10%	$\$ 633,608,000$
20%	$\$ 643,512,000$
30%	$\$ 650,979,000$
40%	$\$ 657,827,000$
50%	$\$ 664,066,000$
60%	$\$ 670,687,000$
70%	$\$ 677,424,000$
80%	$\$ 685,541,000$
90%	$\$ 696,726,000$
100%	$\$ 773,320,000$

Worksheet: [North_I-25 CER 7-14-2010pm - schedule variability FINAL.xIsx]Phase 1 (YOE)
Forecast: Phase 1 (YOE)
Summary:
Certainty level is 80.00%
Certainty range is from $\$ 1,037,253,000$ to $\$ 1,314,010,000$
Entire range is from $\$ 862,774,000$ to $\$ 1,667,613,000$
Base case is $\$ 1,100,612,000$
After 10,000 trials, the std. error of the mean is $\$ 1,072,605$

Statistics:	Forecast values
\quad Trials	10,000
Base Case	$\$ 1,100,612,000$
Mean	$\$ 1,164,764,218$
Median	$\$ 1,151,631,000$
Mode	$\$ 986,977,000$
Standard Deviation	$\$ 107,260,521$
Variance	\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
Skewness	0.5758
Kurtosis	3.21
Coeff. of Variability	0.0921
Minimum	$\$ 862,774,000$
Maximum	$\$ 1,667,613,000$
Range Width	$\$ 804,839,000$
Mean Std. Error	$\$ 1,072,605$

Percentiles:	Forecast values
0%	$\$ 862,774,000$
10%	$\$ 1,037,253,000$
20%	$\$ 1,073,241,000$
30%	$\$ 1,100,386,000$
40%	$\$ 1,125,918,000$
50%	$\$ 1,151,626,000$
60%	$\$ 1,179,447,000$
70%	$\$ 1,211,703,000$
80%	$\$ 1,252,161,000$
90%	$\$ 1,314,010,000$
100%	$\$ 1,667,613,000$

Worksheet: [North_l-25 CER 7-14-2010pm - schedule variability FINAL.xIsx]Preferred Alt (2009)

Forecast: Preferred Alt (2009)
Cell: P133
Summary:
Certainty level is 80.00%
Certainty range is from $\$ 2,021,272,000$ to $\$ 2,199,373,000$
Entire range is from $\$ 1,876,484,000$ to $\$ 2,396,810,000$
Base case is $\$ 2,178,470,000$
After 10,000 trials, the std. error of the mean is $\$ 687,356$

Statistics:	Forecast values
Trials	10,000
Base Case	$\$ 2,178,470,000$
Mean	$\$ 2,109,036,680$
Median	$\$ 2,107,405,000$
Mode	$\$ 2,071,863,000$
Standard Deviation	$\$ 68,735,622$
Variance	\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
Skewness	0.1324
Kurtosis	2.93
Coeff. of Variability	0.0326
Minimum	$\$ 1,876,484,000$
Maximum	$\$ 2,396,810,000$
Range Width	$\$ 520,326,000$
Mean Std. Error	$\$ 687,356$

Percentiles:	Forecast values
0%	$\$ 1,876,484,000$
10%	$\$ 2,021,272,000$
20%	$\$ 2,050,479,000$
30%	$\$ 2,071,268,000$
40%	$\$ 2,089,506,000$
50%	$\$ 2,107,387,000$
60%	$\$ 2,125,383,000$
70%	$\$ 2,144,113,000$
80%	$\$ 2,166,475,000$
90%	$\$ 2,199,373,000$
100%	$\$ 2,396,810,000$

Worksheet: [North_l-25 CER 7-14-2010pm - schedule variability FINAL.xlsx]Preferred Alt (YOE)

Forecast: Preferred Alt (YOE)
Cell: P133
Summary:
Certainty level is 80.00%
Certainty range is from $\$ 6,269,371,000$ to $\$ 10,534,364,000$
Entire range is from $\$ 4,960,329,000$ to $\$ 15,312,757,000$
Base case is $\$ 7,712,231,000$
After 10,000 trials, the std. error of the mean is $\$ 16,697,769$

Statistics:	Forecast values
Trials	10,000
Base Case	$\$ 7,712,231,000$
Mean	$\$ 8,086,309,110$
Median	$\$ 7,689,762,500$
Mode	$\$ 5,823,920,000$
Standard Deviation	$\$ 1,669,776,901$
Variance	0.9052
Skewness	3.38
Kurtosis	0.2065
Coeff. of Variability	$\$ 4,960,329,000$
Minimum	$\$ 15,312,757,000$
Maximum	$\$ 10,352,428,000$
Range Width	$\$ 16,697,769$

Percentiles:	Forecast values
0%	$\$ 4,960,329,000$
10%	$\$ 6,269,371,000$
20%	$\$ 6,643,707,000$
30%	$\$ 6,990,275,000$
40%	$\$ 7,310,036,000$
50%	$\$ 7,689,750,000$
60%	$\$ 8,152,023,000$
70%	$\$ 8,733,822,000$
80%	$\$ 9,467,772,000$
90%	$\$ 10,534,364,000$
100%	$\$ 15,312,757,000$

End of Forecasts

Assumptions

Worksheet: [North_I-25 CER 7-14-2010pm - schedule variability FINAL.xIsx]Unit Costs

Assumption: QUEUE JUMP SIGNALS (UC)

Triangular distribution with parameters:

Minimum
Likeliest Maximum
\$176,000 (=\$F\$64)
\$250,000 (=\$E\$64)
\$289,000 (=\$G\$64)

Assumption: BRIDGE - FLYOVER (UC)
Cell: E24
Triangular distribution with parameters:

Minimum
Likeliest
Maximum
\$102 (=\$F\$24)
\$120 (=\$E\$24)
\$170 (=\$G\$24)

Assumption: BRIDGE - LONG SPAN (UC)
Cell: E22

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
\$85 (=\$F\$22)
\$115 (=\$E\$22)
\$170 (=\$G\$22)

Assumption: BRIDGE - PEDESTRIAN OVERPASS (UC)
Triangular distribution with parameters:

Minimum	$\$ 700$	$(=\$ F \$ 23)$
Likeliest	$\$ 910$	$(=\$ E \$ 23)$
Maximum	$\$ 1,000$	$(=\$ G \$ 23)$

Assumption: BRIDGE - STANDARD (UC)
Cell: E21

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
\$85 (=\$F\$21)
\$105 (=\$E\$21)
\$150 (=\$G\$21)

Assumption: GUARDRAIL TYPE 7 (QF)
Triangular distribution with parameters:

Minimum
Likeliest
Maximum
$0.90 \quad(=\$ 1 \$ 18)$
1.00 (=\$H\$18)
1.30 (=\$J\$18)

Assumption: GUARDRAIL TYPE 7 (UC)

Triangular distribution with parameters:

Minimum	$\$ 65$	$(=\$ F \$ 18)$
Likeliest	$\$ 75$	$(=\$ E \$ 18)$
Maximum	$\$ 100$	$(=\$ G \$ 18)$

Assumption: OTHER EXISTING SIGNAL MODIFICATIONS (UC)

Cell: E65
Triangular distribution with parameters:

Minimum	$\$ 30,000$	$(=\$ F \$ 65)$
Likeliest	$\$ 50,000$	$(=\$ E \$ 65)$
Maximum	$\$ 60,000$	$(=\$ G \$ 65)$

Assumption: PAVEMENT - CROSSROADS/FRONTAGE ROADS (QF)
Triangular distribution with parameters:

Minimum
Likeliest
Maximum
0.95 (=\$1\$16)
1.00 (=\$H\$16)
1.05 (=\$J\$16)

Assumption: PAVEMENT - CROSSROADS/FRONTAGE ROADS (UC)
Triangular distribution with parameters:

Minimum	$\$ 25$	$(=\$ F \$ 16)$
Likeliest	$\$ 33$	$(=\$ E \$ 16)$
Maximum	$\$ 40$	$(=\$ G \$ 16)$

Assumption: PAVEMENT - I-25 (UC)
Cell: E14
Triangular distribution with parameters:

Minimum	$\$ 35$	$(=\$ F \$ 14)$
Likeliest	$\$ 39$	$(=\$ E \$ 14)$
Maximum	$\$ 50$	$(=\$ G \$ 14)$

Assumption: PAVEMENT - I-25 (UC) (E17)
Cell: E17
Triangular distribution with parameters:

Minimum	$\$ 15$	$(=\$ F \$ 17)$
Likeliest	$\$ 22$	$(=\$ E \$ 17)$
Maximum	$\$ 24$	$(=\$ G \$ 17)$

Assumption: PAVEMENT - QUEUE JUMPS (UC)
Triangular distribution with parameters:

Minimum	$\$ 50$	$(=\$ F \$ 56)$
Likeliest	$\$ 57$	$(=\$ E \$ 56)$
Maximum	$\$ 60$	$(=\$ G \$ 56)$

Assumption: PAVEMENT - RAMPS (UC)

Cell: E15

Triangular distribution with parameters:

Minimum	$\$ 25$	$(=\$ F \$ 15)$
Likeliest	$\$ 33$	$(=\$ E \$ 15)$
Maximum	$\$ 40$	$(=\$ G \$ 15)$

Assumption: REMOVAL OF BRIDGES (UC)

Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$\$ 30,000$	$(=\$ F \$ 11)$
$\$ 72,000$	$(=\$ E \$ 11)$
$\$ 100,000$	$(=\$ G \$ 11)$

Assumption: REMOVAL OF BUILDINGS (QF)

Triangular distribution with parameters:

Minimum	1.00	$(=\$ 1 \$ 12)$
Likeliest	1.00	$(=\$ H \$ 12)$
Maximum	1.50	$(=\$ \mathrm{~J} \$ 12)$

Assumption: REMOVAL OF BUILDINGS (UC)

Cell: E12

Triangular distribution with parameters:

Minimum	$\$ 25,000$	$(=\$ F \$ 12)$
Likeliest	$\$ 40,000$	$(=\$ E \$ 12)$
Maximum	$\$ 200,000$	$(=\$ G \$ 12)$

Assumption: REMOVAL OF PAVEMENT (UC)

Triangular distribution with parameters:

Minimum	$\$ 2.00$	$(=\$ F \$ 10)$
Likeliest	$\$ 3.00$	$(=\$ E \$ 10)$
Maximum	$\$ 10.00$	$(=\$ G \$ 10)$

Assumption: ROW - COMMUTER BUS (QF)
Triangular distribution with parameters:

Minimum	0.90	$(=\$ 1 \$ 73)$
Likeliest	1.00	$(=\$ H \$ 73)$
Maximum	1.10	$(=\$ J \$ 73)$

Assumption: ROW - COMMUTER BUS (UC)

Cell: E73
Triangular distribution with parameters:
Minimum
Likeliest
Maximum

$\$ 3,690,000$	$(=\$ F \$ 73)$
$\$ 4,100,000$	$(=\$ E \$ 73)$
$\$ 4,510,000$	$(=\$ G \$ 73)$

\$4,510,000 (=\$G\$73)

Assumption: ROW - EXPRESS BUS (QF)

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
$0.90 \quad(=\$ 1 \$ 72)$
1.00 (=\$H\$72)
1.10 (=\$J\$72)

Assumption: ROW - EXPRESS BUS (UC)
Triangular distribution with parameters:

Minimum
Likeliest
Maximum
\$10,530,000 (=\$F\$72)
\$11,700,000 (=\$E\$72)
\$12,870,000 (=\$G\$72)

Assumption: TENSIONED CABLE BARRIER (UC)

Cell: E19
Triangular distribution with parameters:

Minimum	$\$ 18$	$(=\$ F \$ 19)$
Likeliest	$\$ 20$	$(=\$ E \$ 19)$
Maximum	$\$ 25$	$(=\$ G \$ 19)$

Assumption: EARTHWORK - REGION 4 (UC)
Cell: E32

Student's t distribution with parameters:		
Midpoint	22.8%	$(=\$ E \$ 32)$
Scale	1.0%	
Deg. Freedom	2	

Selected range is from 15.0% to 30.0%

Assumption: EARTHWORK - REGION 6 (UC)
Student's t distribution with parameters:
Midpoint $\quad 5.1 \% \quad(=\$ E \$ 33)$
Scale
0.5\%

Deg. Freedom
Selected range is from 3.0% to 8.0%

Assumption: MOBILIZATION - REGION 4 (UC)

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
8.0\% (=\$F\$40)
11.0\% (=\$E\$40)
16.2\% (=\$G\$40)

Assumption: MOBILIZATION - REGION 6 (UC)

Student's t distribution with parameters:

Midpoint	7.1%	$(=\$ E \$ 41)$
Scale	0.5%	
Deg. Freedom	2	

Selected range is from 4.9% to 10.4%

Assumption: MSE WALL HEIGHT (0-10') (QF)

Cell: H26

OPPORTUNITIES: design level, some historic properties may not be an issue in the future, quantities account for potential ponds along corridor, did not include tiered walls, quantities tied to opportunities to purchase ROW

THREATS: design level, development along corridor, drainage crossings

Triangular distribution with parameters:
Minimum
$0.70 \quad(=\$ 1 \$ 26)$
Likeliest
1.00 (=\$H\$26)

Maximum
1.10 (=\$J\$26)

Assumption: MSE WALL HEIGHT (0-10') (UC)

Cell: E26

Triangular distribution with parameters:

Minimum	$\$ 190$	$(=\$ F \$ 26)$
Likeliest	$\$ 210$	$(=\$ E \$ 26)$
Maximum	$\$ 220$	$(=\$ G \$ 26)$

Assumption: MSE WALL HEIGHT (10-20') (QF)

OPPORTUNITIES: design level, some historic properties may not be an issue in the future, quantities account for potential ponds along corridor, did not include tiered walls, quantities tied to opportunities to purchase ROW

THREATS: design level, development along corridor, drainage crossings

Triangular distribution with parameters:

Minimum	0.70	$(=\$ 1 \$ 27)$
Likeliest	1.00	$(=\$ H \$ 27)$
Maximum	1.10	$(=\$ J \$ 27)$

Assumption: MSE WALL HEIGHT (10-20') (UC)
Cell: E27
OPPORTUNTIES: market conditions, 5-20\% design level
THREATS: market conditions, $5-20 \%$ design level

Triangular distribution with parameters:

Minimum	$\$ 560$	$(=\$$ F\$27)
Likeliest	$\$ 690$	$(=\$ E \$ 27)$
Maximum	$\$ 750$	$(=\$ G \$ 27)$

Assumption: MSE WALL HEIGHT (20'+) (QF)
Cell: H28
OPPORTUNITIES: design level, some historic properties may not be an issue in the future, quantities account for potential ponds along corridor, did not include tiered walls, quantities tied to opportunities to purchase ROW

THREATS: design level, development along corridor, drainage crossings

Triangular distribution with parameters:

Minimum	0.70	$(=\$ 1 \$ 28)$
Likeliest	1.00	$(=\$ \mathrm{H} \$ 28)$
Maximum	1.10	$(=\$ \mathrm{~J} \$ 28)$

Assumption: MSE WALL HEIGHT (20'+) (QF) (cont'd)

Cell: H28

Assumption: MSE WALL HEIGHT (20'+) (UC)

OPPORTUNTIES: market conditions, 5-20\% design level
THREATS: market conditions, $5-20 \%$ design level

Triangular distribution with parameters:

Minimum	$\$ 1,340$	$(=\$ F \$ 28)$
Likeliest	$\$ 1,760$	$(=\$ E \$ 28)$
Maximum	$\$ 1,900$	$(=\$ G \$ 28)$

Assumption: Assumed Construction Unit Cost Rate of Escalation:
Cell: D3

CO Escalation Rates
CDOT: 3.3% based on CCI (average of cumulative average of inflation since 1987)
NFR: 3.0% used for revenue and construction projection
DRGOG/OFMB: 3.3 \% used for revenue projection, applied annually
RTD: 3.3-3.8\%
US36 CER: 3.8%; $\min =3.0 \%$ \& $\max =4.6 \%$
Threats: Other large projects in area, FastTracks, CDOT, material shortages, ie steel, asphalt, cement. More stimulous money may decrease competition. Availability of skilled workforce.

Opportunities: Continued low prices,

Triangular distribution with parameters:

Appendix D North I-25 CER REPORT - schedule variability.xlsx

Based on data such as home price index from 1970 to 2010, assessor's office
5\% escalation annually
Range of 4-7\%
THREATS: Transitional development along corridor, i.e. agricultural (7 K to $10 \mathrm{~K} / \mathrm{acre}$) to industrial/residential (\$7/sf)
OPPORTUNITIES: Land-use planning, stabilization of ROW market, ROW preservation

Triangular distribution with parameters:

Minimum	4.00%	
Likeliest	5.00%	$(=\$ D \$ 4)$
Maximum	6.00%	

Assumption: BUS MAINTENANCE FACILITY (UC)

Based on detailed breakdown with unit cost from other facilities

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
\$14,205,200 (=\$F\$62)
\$16,700,000 (=\$E\$62)
\$16,700,000 (=\$G\$62)

Not for commuter rail or express lots, solely existing or new park and ride lots - 5 locations Based on historical data from RTD

OPPORTUNITIES: more usage of commuter rail lots
THREATS: less usage of commuter rail lots, development in corridor

Triangular distribution with parameters:

Minimum	$\$ 3,600,000$	$(=\$ F \$ 43)$
Likeliest	$\$ 4,460,000$	$(=\$ E \$ 43)$
Maximum	$\$ 5,400,000$	$(=\$ G \$ 43)$

Assumption: COMMUTER BUS STATIONS (UC)

Average of cost of different types/sized stations
Based on RTD West corridor/Southwest Corridor extension projects and RTD 2010 Program Review cost

OPPORTUNITIES: market conditions, lower bid prices, cost sharing with local agencies, ROW available for larger surface lots

THREATS: level of security, increased ridership, timeframe of ridership model (only modeled to 2035)

Triangular distribution with parameters:

Minimum	$\$ 3,328,000$	$(=\$ F \$ 58)$
Likeliest	$\$ 4,160,000$	$(=\$ E \$ 58)$
Maximum	$\$ 5,616,000$	$(=\$ 6 \$ 58)$

Assumption: COMMUTER BUS VEHICLES (QF)
Cell: H75
Triangular distribution with parameters:

Minimum
Likeliest
Maximum
$0.90 \quad(=\$ 1 \$ 75)$
$1.00 \quad(=\$ \mathrm{H} \$ 75)$
1.10 (=\$J\$75)

-Assumed 40' coach style bus
-Cost based on RTD Annual Program Review
-Assumes 3-5\% range; High range based on APTA report of average bus costs

Triangular distribution with parameters:
Minimum
Likeliest
Maximum

$\$ 358,100$	$(=\$ F \$ 75)$
$\$ 376,000$	$(=\$ E \$ 75)$
$\$ 383,800$	$(=\$ G \$ 75)$

Assumption: COMMUTER RAIL - SUBTOTAL BASE COMMUNICATION SYSTEM (QF)Cell: H93

Related to quantity changes in trackwork
OPPORTUNITIES: 20-30\% design level
THREATS: 20-30\% design level, no final agreement with BNSF, ROW issues

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
0.95 (=\$1\$93)
1.00 (=\$H\$93)
1.05 (=\$J\$93)

Assumption: COMMUTER RAIL - SUBTOTAL BASE COMMUNICATION SYSTEM (UC)Cell: E93

Includes for all communications along track
Cost based on cost on similar projects in the U.S.
OPPORTUNITIES: Will need to tie-in to systems to the south of corridor/BSNF, technology advances

THREATS: Will need to tie-in to systems to the south of corridor/BSNF

Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$\$ 892,000$	$(=\$ F \$ 93)$
$\$ 1,500,000$	$(=\$ E \$ 93)$
$\$ 1,762,780$	$(=\$ G \$ 93)$

Assumption: COMMUTER RAIL - SUBTOTAL RURAL FENCE (QF)

Cell: H96

Related to quantity changes in trackwork
OPPORTUNITIES: 20-30\% design level

THREATS: 20-30\% design level, no final agreement with BNSF, ROW issues

Triangular distribution with parameters:
Minimum
0.95 (=\$I\$96)

Likeliest
Maximum
1.00 (=\$H\$96)
1.05 (=\$J\$96)

OPPORTUNITIES: 20-30\% design level, type of fence, location of fence (rural vs. urban)
THREATS: 20-30\% design level, type of fence, location of fence (rural vs. urban)

Triangular distribution with parameters:		
Minimum	$\$ 3$	$(=\$ F \$ 96)$
Likeliest	$\$ 5$	$(=\$ E \$ 96)$
Maximum	$\$ 16$	$(=\$ G \$ 96)$

Assumption: COMMUTER RAIL - SUBTOTAL RURAL FENCE (UC) (cont'd)

Assumption: COMMUTER RAIL - SUBTOTAL 13' GRAVEL ACCESS ROAD (QF)
Related to quantity changes in trackwork
OPPORTUNITIES: 20-30\% design level
THREATS: 20-30\% design level, no final agreement with BNSF, ROW issues

Triangular distribution with parameters:

Minimum	0.95	$(=\$ 1 \$ 91)$
Likeliest	1.00	$(=\$ \mathrm{H} \$ 91)$
Maximum	1.05	$(=\$ \mathrm{~J} \$ 91)$

Assumption: COMMUTER RAIL - SUBTOTAL 13' GRAVEL ACCESS ROAD (UC)
Cell: E91

Includes 12" surface of access road

THREATS: market conditions, haul distances

OPPORTUNITIES: material extension of subballast

Triangular distribution with parameters:
Minimum
\$15 (=\$F\$91)
Likeliest
\$20 (=\$E\$91)
Maximum

Assumption: COMMUTER RAIL - SUBTOTAL COMMUTER RAIL ACTIVATION \& TESTIは@|(匡95

Standard testing in the industry
Based on size of the facility
OPPORTUNITIES: number of construction phases
THREATS: number of construction phases

Triangular distribution with parameters:
Minimum
\$1,500,000 (=\$F\$95)
Likeliest
\$2,000,000 (=\$E\$95)
Maximum
$\$ 3,500,000 \quad(=\$ \mathrm{G} \$ 95)$

Assumption: COMMUTER RAIL - SUBTOTAL COMMUTER RAIL BRIDGE - span <140' Ored icE80

-Based on RTD historical cost data
-Two commuter rail projects recently awarded by RTD

OPPORTUNITIES: 20-30\% design level, new technology, lighter track, new alignment
THREATS: 20-30\% design level, complexity of bridge design, new alignment, roadway and water crossings

Triangular distribution with parameters:

Minimum	$\$ 90$	$(=\$ F \$ 80)$
Likeliest	$\$ 180$	$(=\$ E \$ 80)$
Maximum	$\$ 220$	$(=\$ G \$ 80)$

Assumption: COMMUTER RAIL - SUBTOTAL COMMUTER RAIL BRIDGE - span >140' ©arllwE81

-Based on RTD historical cost data
-Two commuter rail projects recently awarded by RTD

OPPORTUNITIES: 20-30\% design level, new technology, lighter track, new alignment

THREATS: 20-30\% design level, complexity of bridge design, new alignment, roadway and water crossings

Triangular distribution with parameters:

Minimum	$\$ 115$	$(=\$ F \$ 81)$
Likeliest	$\$ 220$	$(=\$ E \$ 81)$
Maximum	$\$ 285$	$(=\$ G \$ 81)$

Assumption: COMMUTER RAIL - SUBTOTAL CONSTRUCTION MANAGEMENT (UC§ell: E113

Triangular distribution with parameters:

Minimum	11.0%	$(=\$ F \$ 113)$
Likeliest	15.0%	$(=\$ E \$ 113)$
Maximum	24.0%	$(=\$ G \$ 113)$

Assumption: COMMUTER RAIL - SUBTOTAL DESIGN (UC)
Cell: E112

THREATS: BSNF design/review process

OPPORTUNITIES: BSNF design/review process

Triangular distribution with parameters:

Minimum	6.0%	$(=\$ F \$ 112)$
Likeliest	8.8%	$(=\$ E \$ 112)$
Maximum	10.0%	$(=\$ G \$ 112)$

Appendix D North I-25 CER REPORT - schedule variability.xlsx

OPPORTUNITIES: 20-30\% design level
THREATS: 20-30\% design level, no final agreement with BNSF, ROW issues

Triangular distribution with parameters:
Minimum
0.95 (=\$1\$87)

Likeliest
1.00 (=\$H\$87)

Maximum
1.05 (=\$J\$87)

Assumption: COMMUTER RAIL - SUBTOTAL SINGLE BALLASTED TRACK (QF)
Cell: H 88
OPPORTUNITIES: 20-30\% design level
THREATS: 20-30\% design level, no final agreement with BNSF, ROW issues

Triangular distribution with parameters:

Minimum	0.95	$(=\$ 1 \$ 88)$
Likeliest	1.00	$(=\$ H \$ 88)$
Maximum	1.05	$(=\$ J \$ 88)$

Assumption: COMMUTER RAIL - SUBTOTAL MSE WALL HEIGHT (0-10') (QF)
Cell: H83
OPPORTUNITIES: design level, some historic properties may not be an issue in the future, quantities account for potential ponds along corridor, did not include tiered walls, quantities tied to opportunities to purchase ROW

THREATS: design level, development along corridor, drainage crossings

Triangular distribution with parameters:

Minimum	0.70	$(=\$ 1 \$ 83)$
Likeliest	1.00	$(=\$ H \$ 83)$
Maximum	1.10	$(=\$ J \$ 83)$

Assumption: COMMUTER RAIL - SUBTOTAL MSE WALL HEIGHT (0-10') (QF) (cont'd) Cell: H83

Assumption: COMMUTER RAIL - SUBTOTAL MSE WALL HEIGHT (0-10') (UC)
Cell: E83

Triangular distribution with parameters:
Minimum
\$190 (=\$F\$83)
Likeliest
\$210 (=\$E\$83)
Maximum
$\$ 220$ (=\$G\$83)

Assumption: COMMUTER RAIL - SUBTOTAL MSE WALL HEIGHT (10-20') (QF)
Cell: H84

OPPORTUNITIES: design level, some historic properties may not be an issue in the future, quantities account for potential ponds along corridor, did not include tiered walls, quantities tied to opportunities to purchase ROW

THREATS: design level, development along corridor, drainage crossings

Triangular distribution with parameters:

Minimum	0.70	$(=\$ 1 \$ 84)$
Likeliest	1.00	$(=\$ H \$ 84)$
Maximum	1.10	$(=\$ \mathrm{~J} \$ 84)$

Triangular distribution with parameters:

Minimum	$\$ 560$	$(=\$ F \$ 84)$
Likeliest	$\$ 690$	$(=\$ E \$ 84)$
Maximum	$\$ 750$	$(=\$ G \$ 84)$

Assumption: COMMUTER RAIL - SUBTOTAL MSE WALL HEIGHT (20'+) (QF)
Cell: H85

OPPORTUNITIES: design level, some historic properties may not be an issue in the future, quantities account for potential ponds along corridor, did not include tiered walls, quantities tied to opportunities to purchase ROW

THREATS: design level, development along corridor, drainage crossings

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
$0.70 \quad(=\$ 1 \$ 85)$
1.00 (=\$H\$85)
1.10 (=\$J\$85)

Assumption: COMMUTER RAIL - SUBTOTAL MSE WALL HEIGHT (20'+) (UC)
Cell: E85

Triangular distribution with parameters:

Minimum	$\$ 1,340$	$(=\$ F \$ 85)$
Likeliest	$\$ 1,760$	$(=\$ E \$ 85)$
Maximum	$\$ 1,900$	$(=\$ G \$ 85)$

Assumption: COMMUTER RAIL - SUBTOTAL AT GRADE CROSSING (QF)
Cell: H 97
OPPORTUNITIES: 20-30\% design level
THREATS: 20-30\% design level, additional request from locals

Triangular distribution with parameters:
Minimum
0.95 (=\$1\$97)

Likeliest
Maximum
1.00 (=\$H\$97)
1.25 (=\$J\$97)

Assumption: COMMUTER RAIL - SUBTOTAL AT GRADE CROSSING (UC)
Average of different types of crossing
OPPORTUNITIES: quiet zones not implemented
THREATS: existing roadway widened

Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$$
\begin{array}{ll}
\$ 112,400 & (=\$ F \$ 97) \\
\$ 137,000 & (=\$ E \$ 97) \\
\$ 174,840 & (=\$ G \$ 97)
\end{array}
$$

Assumption: COMMUTER RAIL - SUBTOTAL COMMUTER RAIL ROW (QF)
Triangular distribution with parameters:

Minimum
Likeliest
Maximum
0.90 (=\$1\$114)
1.00 (=\$H\$114)
1.10 (=\$J\$114)

Appendix D North I-25 CER REPORT - schedule variability.xIsx

Assumption: COMMUTER RAIL - SUBTOTAL COMMUTER RAIL STATIONS (UC)
Cell: E104
Average of cost of different types/sized stations
Based on RTD West corridor/Southwest Corridor extension projects and RTD 2010 Program Review cost

OPPORTUNITIES: market conditions, lower bid prices, cost sharing with local agencies, ROW available for larger surface lots

THREATS: level of security, increased ridership, timeframe of ridership model (only modeled to 2035)

Triangular distribution with parameters:
Minimum

$$
\begin{array}{ll}
\$ 26,400,000 & (=\$ F \$ 104) \\
\$ 33,000,000 & (=\$ E \$ 104) \\
\$ 44,550,000 & (=\$ G \$ 104)
\end{array}
$$

Maximum

Assumption: COMMUTER RAIL - SUBTOTAL CONSTRUCTION TRAFFIC CONTROL (UC)ell: E101

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
3.0\% (=\$F\$101)
6.0\% (=\$E\$101)
10.0\% (=\$G\$101)

Assumption: COMMUTER RAIL - SUBTOTAL DMU VEHICLES (QF)
Cell: H116
Triangular distribution with parameters:

Minimum
Likeliest
Maximum
$0.90 \quad(=\$ 1 \$ 116)$
1.00 (=\$H\$116)
1.10 (=\$J\$116)

Appendix D North I-25 CER REPORT - schedule variability.xIsx

-Assumes cost of single track and maintenance road; based on alignment for trackline -Percentage of trackwork cost

OPPORTUNITIES: 15-20\% design level, soft soils - proximity to major rivers, haul distances, material suitability, unknown borrow sources

THREATS: 15-20\% design level, changes in BNSF requirements, no final agreements in place with BNSF, material suitability, major aggregates supplies in project area

Triangular distribution with parameters:

Minimum	15.0%	$(=\$ F \$ 78)$
Likeliest	20.0%	$(=\$ E \$ 78)$
Maximum	30.0%	$(=\$ G \$ 78)$

Assumption: COMMUTER RAIL - SUBTOTAL EARTHWORK (UC) (E87)
Cell: E87
-Based on RTD 2010 Program review
-Includes cost for all track items from subgrade

OPPORTUNITIES: changes to FTA/FRA requirements, market conditions - steel/concrete prices

THREATS: changes to FTA/FRA requirements, market conditions - steel/concrete prices

Triangular distribution with parameters:

Minimum	$\$ 0$	$(=\$ F \$ 78)$
Likeliest	$\$ 0$	$(=\$ E \$ 78)$
Maximum	$\$ 0$	$(=\$ G \$ 78)$

Assumption: COMMUTER RAIL - SUBTOTAL EARTHWORK (UC) (E88)
Cell: E88
-Based on RTD 2010 Program review
-Includes cost for all track items from subgrade
OPPORTUNITIES: changes to FTA/FRA requirements, market conditions - steel/concrete prices

THREATS: changes to FTA/FRA requirements, market conditions - steel/concrete prices

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
\$0 (=\$F\$78)
\$0 (=\$E\$78)
\$0 (=\$G\$78)

Assumption: COMMUTER RAIL - SUBTOTAL EARTHWORK (UC) (E89)
Cell: E89

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
\$0 (=\$F\$78)
\$0 (=\$E\$78)
\$0 (=\$G\$78)

Assumption: COMMUTER RAIL - SUBTOTAL FEEDER BUS VEHICLES (QF)
Cell: H115

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
$0.90 \quad(=\$ 1 \$ 115)$
1.00 (=\$H\$115)
1.10 (=\$J\$115)

Appendix D North I-25 CER REPORT - schedule variability.xIsx

Assumption: COMMUTER RAIL - SUBTOTAL INSURANCE LEGAL (UC)
Includes contractor's bonding and legal cost
Based on West Corridor project cost
Owner Controlled Insurance (OCIP)
OPPORTUNITIES: contractor's bonding ratings, type of procurement
THREATS: contractor's bonding ratings, type of procurement

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
2.0\% (=\$F\$107)
3.0\% (=\$E\$107)
4.0\% (=\$G\$107)

Assumption: COMMUTER RAIL - SUBTOTAL MAINTENANCE \& OPERATIONS FACILITC@UCE105

Used estimate M\&O facility in California as a template Min/Max based on including different characteristics of facility

OPPORTUNITIES: design level, estimate does not use local cost
THREATS: design level, estimate does not use local cost

Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$\$ 41,963,200$	$(=\$ F \$ 105)$
$\$ 56,900,000$	$(=\$ E \$ 105)$
$\$ 64,946,300$	$(=\$ G \$ 105)$

Assumption: COMMUTER RAIL - SUBTOTAL MISCELLANEOUS BID ITEMS (UC)

Includes structural fill, electrical conduit, public information, landscaping

Triangular distribution with parameters:

Minimum	5.0%	$(=\$ F \$ 103)$
Likeliest	10.0%	$(=\$ E \$ 103)$
Maximum	20.0%	$(=\$ G \$ 103)$

Assumption: COMMUTER RAIL - SUBTOTAL MISCELLANEOUS BID ITEMS (UC) (cont'đell: E103

Assumption: COMMUTER RAIL - SUBTOTAL MOBILIZATION (UC)
Cell: E102
Triangular distribution with parameters:

Minimum	10.0%	$(=\$ F \$ 102)$
Likeliest	15.0%	$(=\$ E \$ 102)$
Maximum	18.0%	$(=\$ G \$ 102)$

Assumption: COMMUTER RAIL - SUBTOTAL NOISE AND VIBRATION (UC)

Cell: E99
Triangular distribution with parameters:

Minimum
Likeliest
Maximum
1.0\% (=\$F\$99)
2.0\% (=\$E\$99)
4.0\% (=\$G\$99)

Assumption: COMMUTER RAIL - SUBTOTAL NOISE AND VIBRATION (UC) (E98)
Cell: E98
-Based on RTD cost for Northwest Corridor
-Percentage of quantified commuter rail construction cost

Triangular distribution with parameters:

Minimum	3.0%	$(=\$ F \$ 98)$
Likeliest	7.0%	$(=\$ E \$ 98)$
Maximum	10.0%	$(=\$ G \$ 98)$

Assumption: COMMUTER RAIL - SUBTOTAL SIGNING AND STRIPING (UC)
Cell: E100

Triangular distribution with parameters:

Minimum	0.5%	$(=\$ F \$ 100)$
Likeliest	1.0%	$(=\$ E \$ 100)$
Maximum	1.5%	$(=\$ G \$ 100)$

Assumption: COMMUTER RAIL - SUBTOTAL UNFORESEEN CONDITIONS (UC)
Cell: E106

OPPORTUNITIES: Lessons learned from current RTD projects, unknown operator/owner (RTD?)

THREATS: No final agreements with BSNF, coordination issues with BSNF and existing RTD commuter rail, unknown operator/owner (RTD?), less tolerance in rail construction, subsurface issues/conditions, hazardous materials on existing rail line, 60-year horizon for construction of commuter rail (30 years until 1st project starts construction), abondoned mines

Triangular distribution with parameters:

Minimum	0.0%	$(=\$ F \$ 106)$
Likeliest	5.0%	$(=\$ E \$ 106)$
Maximum	5.0%	$(=\$ G \$ 106)$

Appendix D North I-25 CER REPORT - schedule variability.xlsx

Assumption: COMMUTER RAIL - SUBTOTAL UTILITIES (UC)

Based on Northwest Corridor project
Percentage of commuter rail construction cost
OPPORTUNITIES: portions on existing alignment
THREATS: portions of new alignment, possibly parallel utilites in existing RR ROW

Triangular distribution with parameters:

Minimum	1.0%	$(=\$ F \$ 108)$
Likeliest	3.0%	$(=\$ E \$ 108)$
Maximum	10.0%	$(=\$ G \$ 108)$

Assumption: CONSTRUCTION TRAFFIC CONTROL (UC)

Includes detour pavement, flagging, traffic control management, temporary signing, TCD, temporary concrete barrier

OPPORTUNITIES: contract phasing, larger projects w/ less crossovers, complete closures of interchanges with vertical alignment changes

THREATS: contract phasing, smaller projects with more crossovers, separating mainline and interchange contracts

Student's t distribution with parameters:

Midpoint
Scale
Deg. Freedom

12.3\% (=\$E\$37)
 0.5\%
 5

Selected range is from 5.0% to 14.0%

Includes all crossing items, water quality ponds, pipe, culverts, riprap, manholes, inlets, trash guards

OPPORTUNITIES: very low level complexity (typical project), 20-30\% design level, new technology such as stormwater vault systems, less ROW with vault systems

THREATS: $20-30 \%$ design level, no utility information, areas in Region 4 will become MS4 areas in future

Student's t distribution with parameters:

Midpoint	10.7%	$(=\$ E \$ 34)$
Scale	0.5%	
Deg. Freedom	5	

Selected range is from 8.0% to 12.0%

Assumption: EROSION CONTROL (UC)

Cell: E35
-Includes items such as topsoil, silt fence, sediment basins, seeding, mulching, soil retention blankets, erosion control supervisor
-Percentage of quantified items
-Historical projects were prior to consent decree
THREATS: Additional EPA regulations
OPPORTUNITIES: New direction at CDOT Environmental Programs Branch (EPB), BMP improvements/advances

Triangular distribution with parameters:

Minimum	3.0%	$(=\$ F \$ 35)$
Likeliest	5.0%	$(=\$ E \$ 35)$
Maximum	7.5%	$(=\$ G \$ 35)$

Appendix D North I-25 CER REPORT - schedule variability.xIsx

Assumption: EXPRESS BUS STATIONS (UC)

Average of cost of different types/sized stations
Based on RTD West corridor/Southwest Corridor extension projects and RTD 2010 Program Review cost

OPPORTUNITIES: market conditions, lower bid prices, cost sharing with local agencies, ROW available for larger surface lots

THREATS: level of security, increased ridership, timeframe of ridership model (only modeled to 2035)

Triangular distribution with parameters:

Minimum	$\$ 34,000,000$	$(=\$ F \$ 57)$
Likeliest	$\$ 42,500,000$	$(=\$ E \$ 57)$
Maximum	$\$ 57,375,000$	$(=\$ G \$ 57)$

Assumption: EXPRESS BUS VEHICLES (QF)

Cell: H74
Ridership based on 2035
OPPORTUNITIES:
THREATS: development/growth in corridor

Triangular distribution with parameters:
Minimum
$0.90 \quad(=\$ 1 \$ 74)$
Likeliest
1.00 (=\$H\$74)

Maximum
-Assumed 40' coach style bus
-Cost based on RTD Annual Program Review
-Assumes 3-5\% range; High range based on APTA report of average bus costs

Triangular distribution with parameters:

Minimum	$\$ 358,100$	$(=\$ F \$ 74)$
Likeliest	$\$ 376,000$	$(=\$ E \$ 74)$
Maximum	$\$ 383,800$	$(=\$ G \$ 74)$

Maximum
\$383,800 (=\$G\$74)

Assumption: EXPRESS BUS, COMMUTER BUS - SUBTOTAL CONSTRUCTION MANAGEME70

Triangular distribution with parameters:

Minimum	10.0%	$(=\$ F \$ 70)$
Likeliest	17.0%	$(=\$ E \$ 70)$
Maximum	24.0%	$(=\$ G \$ 70)$

Assumption: EXPRESS BUS, COMMUTER BUS - SUBTOTAL DESIGN
Cell: E69

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
6.0\% (=\$F\$69)
8.8\% (=\$E\$69)
$11.0 \% \quad$ (=\$G\$69)

Assumption: I-25 GENERAL PURPOSE, TOLLED EXPRESS LANES, CARPOOL LOTS - C6D.NE52

OPPORTUNITIES: using CDOT forces, D-B contracting, larger projects may be CE exemption THREATS:

Triangular distribution with parameters:

Minimum
Likeliest Maximum
$12.0 \% \quad$ (=\$F\$52)
17.0\% (=\$E\$52)
24.0\% (=\$G\$52)

Assumption: I-25 GENERAL PURPOSE, TOLLED EXPRESS LANES, CARPOOL LOTS - CRESE51
Includes phased ROD updates

OPPORTUNITIES: D-B contracting

THREATS: reorganization of project phasing, construction management, funding availability/schedule delay

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
6.0\% (=\$F\$51)
8.8\% (=\$E\$51)
10.0\% (=\$G\$51)

Assumption: INTELLIGENT TRANSPORTATION SYSTEM ELEMENTS (UC)
Includes LED VMS, CCTV, weather station

THREATS: new technology, decreased spacing of signs
OPPORTUNITIES: new technology

Triangular distribution with parameters:

Minimum	$\$ 160,000$	$(=\$ F \$ 44)$
Likeliest	$\$ 169,000$	$(=\$ E \$ 44)$
Maximum	$\$ 200,000$	$(=\$ G \$ 44)$

Assumption: LIGHTING (UC)

Triangular distribution with parameters:

Minimum	1.0%	$(=\$ F \$ 30)$
Likeliest	1.7%	$(=\$ E \$ 30)$
Maximum	2.0%	$(=\$ G \$ 30)$

Assumption: MANAGED LANE SYSTEM (UC)
-Includes items such as electronic equipment, cabinets, power supply, cameras related to the managed lane system
-Based on historical national data from Wilbur Smith

OPPORTUNITIES: new technology

THREATS: costs based mainly on East Coast projects, new technology

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
\$150,000 (=\$F\$45)
\$180,000 (=\$E\$45)
\$300,000 (=\$G\$45)

Triangular distribution with parameters:

Minimum	5.0%	$(=\$ F \$ 61)$
Likeliest	8.8%	$(=\$ E \$ 61)$
Maximum	20.0%	$(=\$ G \$ 61)$

Assumption: MISCELLANEOUS BID ITEMS (UC)

Includes items such as sandblasting, blading, resetting items, health and safety officers, solid waste disposal, geotextile items, fencing, curb and gutter, electrical conduit, rumble strips, traffic attenuators, field office, surveying, public information

THREATS: 5-20\% design level, character of work could change and cause increase to miscellaneous items

OPPORTUNITIES: 5-20\% design level, cost already included in estimate

Uniform distribution with parameters:		
Minimum		
Maximum	7.0%	$(=\$ F \$ 42)$
	8.0%	$(=\$ G \$ 42)$

Assumption: MOBILIZATION (UC)

Cell: E60

Triangular distribution with parameters:

Minimum	5.0%	$(=\$ F \$ 60)$
Likeliest	11.0%	$(=\$ E \$ 60)$
Maximum	18.0%	$(=\$ G \$ 60)$

Includes cost for removal of structures

Triangular distribution with parameters:

Minimum	$\$ 23,760,000$	$(=\$ F \$ 114)$
Likeliest	$\$ 26,400,000$	$(=\$ E \$ 114)$
Maximum	$\$ 29,040,000$	$(=\$ G \$ 114)$

Assumption: ROW - DMU VEHICLES (UC)

Cell: E116

Based on RTD Annual Program Review
Range based on Nationwide review of costs (Jacobs)
THREATS: Current design has not received FRA approval, Changes in FRA regulations OPPORTUNITIES:

Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$\$ 3,600,000$	$(=\$ F \$ 116)$
$\$ 5,200,000$	$(=\$ E \$ 116)$
$\$ 7,000,000$	$(=\$ G \$ 116)$

\$3,600,000 (=\$F\$116)
\$5,200,000 (=\$E\$116)
$\$ 7,000,000 \quad(=\$ G \$ 116)$

Assumption: ROW - FEEDER BUS VEHICLES (UC)
Cell: E115

Cost based on RTD Program Review
Maximum is based on nationwide (APTA) cost of buses

Triangular distribution with parameters:

Minimum
Likeliest
\$288,600 (=\$F\$115)
\$300,000 (=\$E\$115)

Assumption: ROW - Harmony Interchange (QF)

Triangular distribution with parameters:

Minimum	0.90	$(=\$ 1 \$ 134)$
Likeliest	1.00	$(=\$ H \$ 134)$
Maximum	1.10	$(=\$ J \$ 134)$

Assumption: ROW - Harmony Interchange (UC)

Cell: E134

Triangular distribution with parameters:

Minimum	$\$ 2,421,000$	$(=\$ F \$ 134)$
Likeliest	$\$ 2,690,000$	$(=\$ E \$ 134)$
Maximum	$\$ 2,959,000$	$(=\$ G \$ 134)$

Assumption: ROW - I-25 (2 GP + aux. lanes) from SH 392 to Prospect (excluding Hacebny128

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
$0.90 \quad(=\$ 1 \$ 128)$
1.00 (=\$H\$128)
1.10 (=\$J\$128)

Assumption: ROW - I-25 (2 GP + aux. lanes) from SH 392 to Prospect (excluding Hacebnyl28

Assumption: ROW - I-25 (2 GP + aux. lanes) from SH 392 to Prospect (excluding HacrednE128
Triangular distribution with parameters:
Minimum
Likeliest
\$7,146,000 (=\$F\$128)
Maximum
\$7,940,000 (=\$E\$128)

Assumption: ROW - I-25 (2 GP lanes) from SH 14 to SH 1 (QF)
Cell: H133
Triangular distribution with parameters:

Minimum
Likeliest
Maximum
0.90 (=\$1\$133)
1.00 (=\$H\$133)
1.10 (=\$J\$133)

Assumption: ROW - I-25 (2 GP lanes) from SH 14 to SH 1 (UC)
Cell: E133
Triangular distribution with parameters:

Minimum	$\$ 4,824,000$	$(=\$ F \$ 133)$
Likeliest	$\$ 5,360,000$	$(=\$ E \$ 133)$
Maximum	$\$ 5,896,000$	$(=\$ G \$ 133)$

Assumption: ROW - I-25 (3 GP + 1 TEL) from US 36 to 120th Avenue (QF)
Cell: H123
Triangular distribution with parameters:

Minimum	0.90	$(=\$ 1 \$ 123)$
Likeliest	1.00	$(=\$ H \$ 123)$
Maximum	1.10	$(=\$ J \$ 123)$

Assumption: ROW - I-25 (3 GP + 1 TEL) from US 36 to 120th Avenue (UC)
Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$$
\begin{array}{ll}
\$ 5,058,000 & (=\$ F \$ 123) \\
\$ 5,620,000 & (=\$ E \$ 123) \\
\$ 6,182,000 & (=\$ G \$ 123)
\end{array}
$$

Assumption: ROW - I-25 (3 GP + 1 TEL) from 120th Avenue to SH 7 (QF)
Cell: H131

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
$0.90 \quad$ (=\$1\$131)
1.00 (=\$H\$131)
1.10 (=\$J\$131)

Assumption: ROW - I-25 (3 GP + 1 TEL) from 120th Avenue to SH 7 (UC)
Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$$
\begin{array}{ll}
\$ 5,652,000 & (=\$ F \$ 131) \\
\$ 6,280,000 & (=\$ E \$ 131) \\
\$ 6,908,000 & (=\$ G \$ 131)
\end{array}
$$

Assumption: ROW - I-25 (3 GP) from SH 56 to SH 392 (QF)
Cell: H132
Triangular distribution with parameters:

Minimum
Likeliest
Maximum
0.90 (=\$1\$132)
1.00 (=\$H\$132)
1.10 (=\$J\$132)

Assumption: ROW - I-25 (3 GP) from SH 56 to SH 392 (UC)
Cell: E132
Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$\$ 25,650,000$	$(=\$ F \$ 132)$
$\$ 28,500,000$	$(=\$ E \$ 132)$
$\$ 31,350,000$	$(=\$ G \$ 132)$

Assumption: ROW - I-25 (3 GP) from SH 66 to WCR 38 (including WCR 34 interchange¢6RFH125
Triangular distribution with parameters:

Minimum	0.90	$(=\$ 1 \$ 125)$
Likeliest	1.00	$(=\$ H \$ 125)$
Maximum	1.10	$(=\$ \mathrm{~J} 125)$

Assumption: ROW - I-25 (3 GP) from SH 66 to WCR 38 (including WCR 34 interchangeథeUCE125
Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$$
\begin{array}{ll}
\$ 3,276,000 & (=\$ F \$ 125) \\
\$ 3,640,000 & (=\$ E \$ 125) \\
\$ 4,004,000 & (=\$ G \$ 125)
\end{array}
$$

Assumption: ROW - I-25 (3 GP) from WCR 38 to SH 56 (excluding SH 56 interchange) (ReH) H126

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
$0.90 \quad(=\$ 1 \$ 126)$
1.00 (=\$H\$126)
1.10 (=\$J\$126)

Assumption: ROW - I-25 (3 GP) from WCR 38 to SH 56 (excluding SH 56 interchange) (CRA) ($\$ 126$

Assumption: ROW - I-25 (3 GP) from WCR 38 to SH 56 (excluding SH 56 interchange) (LEQA) E126
Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$$
\begin{array}{ll}
\$ 1,107,000 & (=\$ F \$ 126) \\
\$ 1,230,000 & (=\$ E \$ 126) \\
\$ 1,353,000 & (=\$ G \$ 126)
\end{array}
$$

Assumption: ROW - I-25 (Add 1 TEL) from SH 7 to SH 14 (QF)
Cell: H136
Triangular distribution with parameters:

Minimum
Likeliest
Maximum

```
0.90 (=$I$136)
1.00 (=$H$136)
1.10 (=$J$136)
```


Assumption: ROW - I-25 (Add 1 TEL) from SH 7 to SH 14 (UC)
Cell: E136
Triangular distribution with parameters:

Minimum
Likeliest
Maximum
\$1,656,000 (=\$F\$136)
\$1,840,000 (=\$E\$136)
\$2,024,000 (=\$G\$136)

Assumption: ROW - ROW Phase 2 (QF)

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
$0.90 \quad(=\$ 1 \$ 130)$
1.00 (=\$H\$130)
1.10 (=\$J\$130)

Assumption: ROW - ROW Phase 2 (UC)

Cell: E130
Triangular distribution with parameters:

Minimum
Likeliest
Maximum

Assumption: ROW - ROW Phase 3 (QF)
Cell: H135
Triangular distribution with parameters:
Minimum
Likeliest
0.90 (=\$1\$135)

Maximum

Cell: H135

Cell: E135

Triangular distribution with parameters:
Minimum
$\begin{array}{ll}\$ 19,530,000 & (=\$ F \$ 135) \\ \$ 21,700,000 & (=\$ E \$ 135) \\ \$ 23,870,000 & (=\$ G \$ 135)\end{array}$

Assumption: ROW - SH 14 Interchange (QF)

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
$0.90 \quad(=\$ 1 \$ 129)$
1.00 (=\$H\$129)
1.10 (=\$J\$129)

Assumption: ROW - SH 14 Interchange (UC)
Triangular distribution with parameters:

Minimum
Likeliest
Maximum
\$2,448,000 (=\$F\$129)
\$2,720,000 (=\$E\$129)
\$2,992,000 (=\$G\$129)

Cell: E129
Cell: H129

Assumption: ROW - SH 56 Interchange (QF)

Triangular distribution with parameters:

Minimum	0.90	$(=\$ 1 \$ 127)$
Likeliest	1.00	$(=\$ H \$ 127)$
Maximum	1.10	$(=\$ J \$ 127)$

Assumption: ROW - SH 56 Interchange (UC)

Cell: E127

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
\$2,988,000 (=\$F\$127)
\$3,320,000 (=\$E\$127)
\$3,652,000 (=\$G\$127)

Assumption: ROW - SH 7 Par-clo Interchange (QF)
Cell: H124

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
$0.90 \quad(=\$ 1 \$ 124)$
1.00 (=\$H\$124)
1.10 (=\$J\$124)

Assumption: ROW - SH 7 Par-clo Interchange (UC)

Triangular distribution with parameters:

Minimum	$\$ 8,910,000$	$(=\$ F \$ 124)$
Likeliest	$\$ 9,900,000$	$(=\$ E \$ 124)$
Maximum	$\$ 10,890,000$	$(=\$ G \$ 124)$

Assumption: ROW - US 34 from Rocky Mtn. Avenue to LCR 5 (QF)

Cell: H137

Triangular distribution with parameters:
Minimum

0.90	$(=\$ 1 \$ 137)$
1.00	$(=\$ \mathrm{H} \$ 137)$
1.10	$(=\$ \mathrm{~J} \$ 137)$

Maximum
1.10 (=\$J\$137)

Assumption: ROW - US 34 from Rocky Mtn. Avenue to LCR 5 (UC)
Cell: E137
Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$\$ 17,910,000$	$(=\$ F \$ 137)$
$\$ 19,900,000$	$(=\$ E \$ 137)$
$\$ 21,890,000$	$(=\$ G \$ 137)$

Assumption: Schedule - COMMUTER RAIL - SUBTOTAL Phase 1

Cell: D147
Triangular distribution with parameters:
Minimum
2,020.00 (=\$E\$147)
Likeliest
Maximum

$$
2,020.00 \quad(=\$ \mathrm{D} \$ 147)
$$

$$
2,030.00 \quad(=\$ F \$ 147)
$$

Assumption: Schedule - COMMUTER RAIL - SUBTOTAL Phase 2

Cell: D148
Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$$
\begin{array}{ll}
2,035.00 & (=\$ E \$ 148) \\
2,045.00 & (=\$ D \$ 148) \\
2,050.00 & (=\$ F \$ 148)
\end{array}
$$

Assumption: Schedule - COMMUTER RAIL - SUBTOTAL Phase 3
Cell: D149

Triangular distribution with parameters:

Minimum
2,050.00 (=\$E\$149)
Likeliest
Maximum

2,065.00 (=\$D\$149)
2,070.00 (=\$F\$149)

Assumption: Schedule - EXPRESS BUS, COMMUTER BUS - SUBTOTAL Phase 1
THREATS: ROW preservation most likely will occur at the end of Phase I-Highway improvements are higher priority

Triangular distribution with parameters:

Minimum	$2,015.00$	$(=\$ E \$ 143)$
Likeliest	$2,027.00$	$(=\$ D \$ 143)$
Maximum	$2,032.00$	$(=\$ F \$ 143)$

Assumption: Schedule - EXPRESS BUS, COMMUTER BUS - SUBTOTAL Phase 2

Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$$
\begin{array}{ll}
2,035.00 & (=\$ E \$ 144) \\
2,045.00 & (=\$ \mathrm{D} \$ 144) \\
2,050.00 & (=\$ \mathrm{~F} \text { 144) }
\end{array}
$$

Triangular distribution with parameters:

Minimum	$2,050.00$	$(=\$ E \$ 145)$
Likeliest	$2,065.00$	$(=\$ \mathrm{D} 145)$
Maximum	$2,070.00$	$(=\$ F \$ 145)$

Assumption: Schedule - Harmony Interchange

Cell: K134

Triangular distribution with parameters:
Minimum

$$
\begin{array}{ll}
2,035.00 & (=\$ \mathrm{~L} \$ 134) \\
2,045.00 & (=\$ \mathrm{~K} \$ 134) \\
2,050.00 & (=\$ \mathrm{M} \$ 134)
\end{array}
$$

Likeliest
Maximum

Assumption: Schedule - I-25 (2 GP + aux. lanes) from SH 392 to Prospect (excludingelarbd 28
Triangular distribution with parameters:

Minimum
Likeliest
Maximum

2,015.00 (=\$L\$128)
2,020.00 (=\$K\$128)
2,023.00 (=\$M\$128)

Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$$
\begin{array}{ll}
2,035.00 & (=\$ \mathrm{~L} \$ 133) \\
2,045.00 & (=\$ \mathrm{~K} \$ 133) \\
2,050.00 & (=\$ \mathrm{M} \$ 133)
\end{array}
$$

Assumption: Schedule - I-25 (3 GP + 1 TEL) from US 36 to 120th Avenue

Cell: K123

Triangular distribution with parameters:
Minimum
2,017.00 (=\$L\$123)
Likeliest
Maximum
2,030.00 (=\$K\$123)
2,035.00 (=\$M\$123)

Assumption: Schedule - I-25 (3 GP + 1 TEL) from 120th Avenue to SH 7
Cell: K131
Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$$
\begin{array}{ll}
2,035.00 & (=\$ \mathrm{~L} \$ 131) \\
2,045.00 & (=\$ \mathrm{~K} \$ 131) \\
2,050.00 & (=\$ \mathrm{M} \$ 131)
\end{array}
$$

Triangular distribution with parameters:

Minimum
Likeliest
Maximum

Assumption: Schedule - I-25 (3 GP) from SH 66 to WCR 38 (including WCR 34 interch@qde)K125

Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$2,017.00$	$(=\$ \mathrm{~L} \$ 125)$
$2,026.00$	$(=\$ \mathrm{~K} \$ 125)$
$2,031.00$	$(=\$ \mathrm{M} \$ 125)$

2,026.00 (=\$K\$125)

$$
2,031.00 \quad(=\$ \mathrm{M} \$ 125)
$$

Assumption: Schedule - I-25 (3 GP) from WCR 38 to SH 56 (excluding SH 56 interchangel): K126
Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$$
\begin{array}{ll}
2,015.00 & (=\$ \mathrm{~L} \$ 126) \\
2,020.00 & (=\$ \mathrm{~K} \$ 126) \\
2,023.00 & (=\$ \mathrm{M} \$ 126)
\end{array}
$$

Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$$
\begin{array}{ll}
2,050.00 & (=\$ \mathrm{~L} \$ 136) \\
2,065.00 & (=\$ \mathrm{~K} \$ 136) \\
2,070.00 & (=\$ \mathrm{M} \$ 136)
\end{array}
$$

Assumption: Schedule - SH 14 Interchange

Cell: K129

Triangular distribution with parameters:
Minimum

$$
\begin{array}{ll}
2,015.00 & (=\$ \mathrm{~L} \$ 129) \\
2,020.00 & (=\$ \mathrm{~K} \$ 129) \\
2,023.00 & (=\$ \mathrm{M} \$ 129)
\end{array}
$$

Likeliest
Maximum

Assumption: Schedule - SH 56 Interchange

Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$$
\begin{array}{ll}
2,015.00 & (=\$ \mathrm{~L} \$ 127) \\
2,020.00 & (=\$ \mathrm{~K} \$ 127) \\
2,023.00 & (=\$ \mathrm{M} \$ 127)
\end{array}
$$

Triangular distribution with parameters:

Minimum
Likeliest Maximum

Assumption: Schedule - US 34 from Rocky Mtn. Avenue to LCR 5
Cell: K137

Triangular distribution with parameters:
Minimum
2,050.00 (=\$L\$137)
Likeliest
2,065.00 (=\$K\$137)
Maximum

Assumption: SIGNING AND STRIPING (UC)

Cell: E36

Student's t distribution with parameters:

Midpoint	2.3%	$(=\$ E \$ 36)$
Scale	0.5%	
Deg. Freedom	5	

Selected range is from 1.0% to 3.0%

Assumption: TRAFFIC SIGNALS (RAMP TERMINAL INTERSECTION) (UC)

Cell: E46
Triangular distribution with parameters:

Minimum
Likeliest
Maximum

$\$ 200,000$	$(=\$ F \$ 46)$
$\$ 250,000$	$(=\$ E \$ 46)$
$\$ 300,000$	$(=\$ G \$ 46)$

Assumption: UNFORESEEN CONDITIONS (UC)

Cell: E48

Includes cost of unknown unknowns
Percentage of construction cost
THREATS: potential for coal mine subsidence, 60-year horizon of project (scope creep)
OPPORTUNITIES: existing roadway, very low complexity project, no major issues with hazardous materials/historic properties anticipated due to completed studies, low chance of increasing scope of project, projects recently completed along corridor

Triangular distribution with parameters:

Minimum	0.0%	$(=\$ F \$ 48)$
Likeliest	1.0%	$(=\$ E \$ 48)$
Maximum	4.0%	$(=\$ G \$ 48)$

Assumption: UNFORESEEN CONDITIONS (UC)
Cell: E66

THREATS: requirements of operating agency, requirements of locals, subsurface conditions, hazardous materials

OPPORTUNITIES: requirements of operating agency, construction in localized areas for queue jumps

Triangular distribution with parameters:
Minimum $\quad 0.0 \% \quad(=\$ F \$ 66)$

Likeliest

$$
1.0 \% \quad(=\$ E \$ 66)
$$

Maximum

Assumption: URBAN DESIGN / LANDSCAPING (UC)

$\begin{array}{lrr}\text { Student's } t \text { distribution with parameters: } \\ \text { Midpoint } & 1.0 \% & (=\$ E \$ 38) \\ \text { Scale } & 0.5 \% & \\ \text { Deg. Freedom } & 5 & \end{array}$
Selected range is from 0.5% to 2.0%

Assumption: UTILITIES (UC)

Based on construction in urban areas

Triangular distribution with parameters:

Minimum
Likeliest
Maximum
5.0\% (=\$F\$67)
7.0\% (=\$E\$67)
8.0\% (=\$G\$67)

-Percentage of total construction cost
-Includes cost for relocations, design

OPPORTUNITIES: no parallel utilities in ROW, most crossing utilities at interchanges, 5-20\% design level, access control limits the amount of utilities in interstate ROW

THREATS: 5-20\% design level, potentially more cost in urban sections of project, additonal utilities in the future

Triangular distribution with parameters:

Minimum	4.0%	$(=\$ F \$ 49)$
Likeliest	4.6%	$(=\$ E \$ 49)$
Maximum	5.0%	$(=\$ G \$ 49)$

[^1]
Sensitivity Charts

End of Sensitivity Charts

Appendix E

CER Closeout Presentation

THIS PAGE INTENTIONALLY LEFT BLANK.

North I-25 Project

July 12-15, 2010
Denver, CO

Cost Estimate Review Closeout

Cost Estimate Review Objective

Conduct an unbiased risk-based review to verify the accuracy and reasonableness of the current total cost estimate to complete North I-25 project and to develop a probability range for the cost estimate that represents the project's current stage of design.

DEPARTMENT OF TRANSPGRTATIOA

Cost Estimate Review Financial Plans (SAFETEA-LU)

Financial Plans required at the following thresholds: Consider all costs - Engineering, Construction, ROW, Utilities... in Year of Expenditure (YOE) Dollars

- Over $\$ 500$ Million

Major Project - Requires concurrence from FHWA's HQ

- \$100 to \$500 Million

Required, however review is at FHWA Division's discretion
"Cost to complete estimates based on reasonable assumptions as determined by the Secretary (FHWA)"

Reasonable assumptions = Risk based analysis

DEPARTMENT OF TRANSPGRTATIOM

Major Project Process

Review Participants

- FHWA Division Office, Resource Center and HQ Major Project Technical Experts
- Colorado DOT (CDOT)
- North I-25 Project Consultants (Felsburg Holt \& Ullevig, Jacobs)

DEPARTMENT OF TRANSPGRTATIOR

Review Agenda
 \section*{MONDAY, July 12}

Field Visit, Project Overview by Project Personnel
CER I ntroduction by FHWA
Define Escalation, Threats/Opportunities
Escalation
Removals (demolition)
Miscellaneous Bid Items

TUESDAY, July 13

Roadway Base and Surface Treatments
Earthwork, Landscaping, Roadside Features, Erosion Control
Bridges, Retaining Walls, Sound Walls
Unforeseen Conditions
Utilities, Right of Way
Mobilization, Design, Construction Engineering

Review Agenda

WEDNESDAY, July 14

Express and Commuter Bus
Carpool Lots
Commuter Rail
Lighting, Signals, Signs, Pavement Markings
ITS, Managed Lanes System
Construction Traffic Control
Drainage

THURSDAY, July 15

Begin findings and close out Presentation preparation Dry Run of close out presentation
Closeout Presentation

Documentation Provided

- Project Cost Estimate and Schedule, History and Basis
- Draft Environmental Impact Statement
- Project Schematics and Aerial Layouts
- Comparable Project Data
- Inflation Data (CCI, MPOs, RTD, etc.)

DEPARTMENT OF TRANSPGRTATIOM

Review Methodology

- Review Team Input
*FHWA
* State DOT and Regional Transportation District
*Project Consultants
- Estimate Review
* Understanding of estimate development process
* Threats and Opportunities for various items
* Contingencies and Projected Escalation Rates

DEPARTMENT OF TRANSPGRTATIG

Review Methodology (continued)

- Threats and Opportunities Analysis
* Reviewed major cost elements
* Developed impacts and probabilities for significant project threats and opportunities
* Developed probability assumption curves
- Performed Monte Carlo simulation to generate a project estimate forecast as a range

DEPARTMENT OF TRANSPGRTATIOR

Basis of Review

- Review based on estimates provided by the Team in advance with revisions made during the review
- Review to determine the reasonableness of assumptions used in the estimate
- Not an independent FHWA estimate
- Did not verify quantities and unit prices

Review Findings

Good Estimating Practices

- Use of unit prices and historical percentages from recent similar projects in the I-25 corridor
- More detailed estimate than typical at this stage of a project
- Up front consideration of variation in prices and quantities
- Used lessons learned from previous CERs
- Involvement of CDOT executive/region management

DEPARTMENT OF TRANSPGRTATIPM

Base Estimate Results

Phase 1

Preferred Alt

Adjusted Estimate (2009)

Post-Review
(2009-70\%)

Post-Review YOE (70\%)
\$640.9m
\$677.3m
\$1,271.2m
\$9,474.9m
\$2,178.5m
\$2,144.5m

DEPARTMENT OF TRANSPGRTATIOM

Estimate Adjustments

- Inflation Factor
* Lowered to 3.3\% (from 4.35\%)
* Assumption curve from 2.7\% to 5.3\%
* Separate factor for ROW (5\%)
* Assumption curve from 4\% to 6\%
- Reviewed and Adjusted Unit prices, e.g.
* Concrete pavement lowered, \$41/sy to \$38.50/sy
* Type 7 guardrail lowered from \$90/If to \$75/If
* Cable guardrail raised, \$10/If to \$20/If
* Erosion control (highway) allowance from 3.1\% to 5\%
* Mobilization (highway - R4) from 15.7% to 11.0%
* Retaining Wall 10'-20' (rail) from \$700/If to \$690/If
* Unforeseen Condition (rail) from 1\% to 5\%
* ROW (rail) from \$24.8m to \$26.4m

Estimate Allowances

*Unforeseen Conditions
*1\% roadway, 5\% commuter rail, 1\% express bus
*Miscellaneous Bid Items

* 7.7% roadway, 10% rail, 8.8% bus

DEPARTMENT OF TRANSPGRTATIO

Threats

- Funding availability
- Letting delay (increase in inflation)
- Market conditions
* Material prices (i.e. steel, fuel)
* Unknown future inflation
- Environmental permit delays
* Regulation changes
- Design, criteria changes, soils
- Uncertainty on owner/operator of rail and bus
- Rail line on new alignment
- Railroad agreements, payments, design reviews
- Land use changes (ROW, ridership)
- Project timeframe (65 years)
- Unknown procurement method

Opportunities

- Market conditions
* Material prices (i.e. steel, fuel)
* Potential reduction in inflation
* Better pricing through competition
- Technology
- Bridges, ITS
- Retaining Wall/ROW trade-off
- Final Design
- Schedule Acceleration - Funding availability
- Innovative Procurement
- More Commuter Rail Experience
- Not overly complex

Threats and Opportunities incorporated into the estimate

- Developed assumption curves for quantities and unit prices that model the cost and probability impact of the threat/opportunity
- Developed assumption curves for high cost items - 150 curves
- Crystal Ball software
- 10,000 Monte Carlo iterations

DEPARTMENT OF TRANSPGRTATIOM

Monte-Carlo Simulation Random Numbers and Outputs

$$
y=f(x) \text { or } y \text { is a function of } x
$$

Outputs: Binned Results

Inputs: Sampled Values

Risk Analysis - Sample Assumption Curve

$\operatorname{Min}=2.74 \%$ Most likely $=3.3 \% \quad \operatorname{Max}=5.34 \%$

Risk Analysis - Sample Assumption Curve

$$
\text { Min }=4 \% \text { Most Likely }=5 \% \text { Max }=6 \%
$$

Risk Analysis - Sample Assumption Curve

$$
\text { Min }=15 \% \text { Midpoint }=22.8 \% \text { Max }=30 \%
$$

Risk Analysis - Sample Assumption Curve

$$
\text { Min }=0 \% \text { Most Likely }=5 \% \text { Max }=5 \%
$$

Simulation Results

Simulation Results

Total Project Costs (YOE)

Preferred Alt

\$5,449,159,000
\$6,748,013,000
\$7,125,178,000
\$7,482,515,000
\$7,856,255,000
\$8,290,487,000
\$8,817,202,000
\$9,474,923,000
\$10,305,317,000
\$11,495,429,000
\$16,346,966,000

Effect of Inflation

- 1 Year Delay in Phase $1=\$ 48.4 m$
- 1 Year Delay in Preferred Alt $=\$ 385.1 \mathrm{~m}$

DEPARTMENT OF TRANSPGRTATIB

Schedule Variability

- Assigning ranges to mid-year of construction

		Forecast	
Alter		No Schedule Variability	Schedule Variability
	70% (YOE)	$\$ 9,474,923,000$	$\$ 8,877,822,000$
	Baseline (YOE)	$\$ 7,712,231,000$	$\$ 7,712,231,000$
	$70 \%(2009)$	$\$ 2,144,469,000$	$\$ 2,144,113,000$
	Baseline (2009)	$\$ 2,178,470,000$	$\$ 2,178,470,000$
	$70 \%($ YOE $)$	$\$ 1,271,239,000$	$\$ 1,211,703,000$
	Baseline (YOE)	$\$ 1,100,612,000$	$\$ 1,100,612,000$
	$70 \%(2009)$	$\$ 677,280,000$	$\$ 677,424,000$
	Baseline (2009)	$\$ 640,997,000$	$\$ 640,997,000$

North I-25
EIS

Cost Estimate Review Draft Recommendations

- Finalize and submit NEPA, PMP, FP
- Refine and Manage Project Schedule and Budget
- Manage threats and opportunities through a risk management plan
- Look for opportunities to accelerate schedule to take advantage of current market conditions and inflation savings
- Develop consistent CDOT escalation rate

Cost Estimate Review

Next steps:

- FHWA will prepare a final report documenting review findings.
* Draft report for review within 30 days
* Division Office will review and circulate the draft
* Final report within 30 days after receipt of comments
- FHWA uses the report for the review of the Initial Financial Plan
- Review is a snapshot of the current estimate
- Request FMIS Major Project Identifier
- Change classification to active major project

NORTH I-25

EIS

Questions?

Appendix F

North I-25 CER Information Packet

THIS PAGE INTENTIONALLY LEFT BLANK.

DRAFT

North I-25 Environmental Impact Statement
 Colorado Department of Transportation
 Review Package Submittal
 FHWA Cost Estimate Review

June 2010

Table of Contents

Project Overview

Cost Estimates

Methodology \& Assumptions

Introduction

The Federal Highway Administration (FHWA) and the Federal Transit Administration (FTA), in cooperation with the Colorado Department of Transportation (CDOT), initiated preparation of an Environmental Impact Statement (EIS) to identify and evaluate multi-modal transportation improvements along approximately 61 miles of the I-25 corridor from the Fort Collins-Wellington area to Denver. The improvements being considered in this Draft EIS will address regional and inter-regional movement of people, goods, and services in the I-25 corridor.

Project Purpose

The purpose of the project is to meet long-term travel needs between the Fort Collins-Wellington area, the rapidly growing population centers along the l-25 corridor, and south to the Denver Metro Area. To meet long-term travel needs, the project must improve safety, mobility and accessibility, and provide modal alternatives and interrelationships.

Need for the Project

The need for the project can be summarized in the following four categories:
Increased frequency and severity of crashes

- Increasing traffic congestion leading to mobility and accessibility problems
- Aging and functionally obsolete infrastructure
- Lack of modal alternatives

Preferred Alternative

The Draft Recommended Preferred Alternative (PA) is a combination of transit and highway components along multiple corridors. The PA is illustrated on Figure 1 and described below.

Recommended

Figure 1

Preferred Alternative

```
NORTH I-25
```

EIS
intomation. coperation. transportaion

व주N

\square

I-25 Improvements

The Preferred Alternative would widen I-25 with general purpose lanes between SH 14 and SH 66. It would also add Tolled Express Lanes (lanes restricted to high-occupant vehicles and tolled single occupant vehicles) between SH 14 and US 36 for a total of eight lanes between SH 14 and US 36 . Between SH 1 and SH $14 \mathrm{I}-25$ would be reconstructed to current design standards but would remain four lanes. I-25 cross sections are illustrated below:

SH 14 to SH 7
(Tolled Express Lanes - Buffer Separated)

SH 7 to US 36
(Tolled Express Lanes
Buffer Separated with Auxiliary Lanes)

Interchanges

The PA would fully reconstruct 14 interchanges, widen bridges at two interchanges and modify ramp terminals and ties at another nine interchanges to accommodate future travel needs.

Carpool Lots

Carpool lots would be located near many interchanges along the l- 25 corridor to serve HOV users of the TEL. There are five new or expanded carpool lots planned. Eight additional carpool lots would be combined with Express Bus stations. The existing carpool lots at SH 66/I-25 and US 34/SH 257 would remain in place.

Express Bus Service

Express Bus services would connect northern Colorado communities to downtown Denver and to DIA, utilizing the tolled express lanes along I-25. Ten Express Bus stations would be constructed as part of this service.
Two of the 10 stations would provide an intermodal connection between the planned commuter rail line and the planned express bus. An existing carpool lot located at US $34 / \mathrm{SH} 257$ would be upgraded for use by the express bus. Five stations located adjacent to I- 25 would provide the bus with bus-only slip ramps to improve travel time and reliability.

US 85 Commuter Bus

The Preferred Alternative includes commuter bus service along US 85 connecting Greeley to downtown Denver. It would include five new bus stations along the corridor and queue jumps and/or signal priority, allowing buses to bypass queued traffic at 17 intersections to help achieve reliable speeds for bus services.

Commuter Rail Transit

The Recommended Preferred Alternative includes commuter rail transit service from Fort Collins to the anticipated FasTracks North Metro end-of-line. Service to Denver would travel through Longmont and along the FasTracks North Metro Corridor; a transfer would not be necessary. To reach Boulder, northern Colorado riders would transfer to the Northwest Rail Corridor at the Sugar Mill station in Longmont. The service is assumed to operate with diesel multiple unit vehicles, similar to those assumed in the FasTracks plan to maintain interoperability.

The rail line would be largely single-track with passing tracks in four locations. RTD has recently purchased the rail ROW from north of the North Metro Corridor end-of-line to approximately CR 8 at I-25.
The plan includes construction of nine commuter rail stations eight of which have parking associated with them.

Four new grade separated crossings would be provided for the commuter rail service. Other intersection treatments would include gates or four-quadrant gates with median.

The following locations would be provided grade-separated railroad crossings of roadways:

- I-25 south of CR 8 (replaces a previous crossing)
- SH 52 and Wyndham Hill, west of I-25
- SH 119 near $3^{\text {rd }}$ Avenue in Longmont
- US 287 north of Berthoud
- US 34 in Loveland (existing crossing)

Maintenance Facilities

A bus maintenance facility serving both the $\mathrm{I}-25$ express bus and the US 85 commuter bus would be located at 31st Street and 1st Avenue in Greeley. The bus maintenance facility would include staff for the maintenance and operation of buses for the US 85 commuter bus service, I- 25 bus service, and the feede bus routes.
A commuter rail maintenance facility would include facilities for vehicle maintenance, cleaning, fueling and storage; track maintenance; parts storage; and vehicle operator facilities. The commuter rail maintenance facility would employ an estimated 90 workers. The recommended 30 -acre site included in the Preferred Alternative is located at CR 46 and US 287 in Berthoud.

Feeder Bus

Local bus service would be provided to enable local riders to access the commuter rail and express bus regional services. Four feeder bus routes would operate hourly, timed to meet the regional services.

Congestion Management Features

Several congestion management measures are included with the Preferred Alternative. These serve to enhance the Preferred Alternative to improve the efficiency of the transportation system:

- Incident Management: Courtesy patrol service would serve the I-25 corridor between SH 14 and SH7
- Signal Coordination: Signal timing at interchanges along I-25 would be optimized
- Ramp Metering: Ramp meters would be installed when warranted by interchange volumes
- Real-Time Transportation Information: Variable message signs would be installed along the I-25 corridor.
- Bicycle/Pedestrian Facilities: Transit station areas would be designed to provide bicycle and pedestrian links to the nearest local road.
- Travel Demand Measures: Use of alternative modes would be encouraged during construction.

Other Preferred Alternative Features

The Preferred Alternative would also include retaining walls, water quality ponds, and drainage structures.

Phasing

The project's Purpose and Need statement identifies a need to replace aging infrastructure on I-25, address safety concerns on I-25, improve mobility and provide modal options.

In addition, the two North I-25 committees representing the municipalities and agencies in the corridor identified the following guiding principles for development of Phase 1 :

- Address concerns(safety, infrastructure and capacity) on I-25 north of SH 66

Include bus transit

- Include a commitment to Commuter Rail

A review of current interchange safety rates, sufficiency ratings for structures, anticipated volumes in 2035 and remaining service life for pavement resulted in the following key findings:
> Pavement between SH 66 and Prospect has no practical remaining service life.
> Interchange structures at SH 1, SH 14, Prospect, US 34, and SH 56 all have sufficiency ratings below 75.
> Pavement and structures south of SH 66 are relatively new with a long remaining service life
> Accident rates are higher than average at the SH 14, US 34, and SH 60 interchanges with I-25.

Phase 1

The effort described above resulted in the Phase 1 shown in Figure 2. As shown, this alternative includes the following elements.

- Widening I-25 between SH 66 and SH 56 with one tolled express lane in each direction. Widening would include noise and sound walls, water quality ponds, and median barrier features as well as the right of way purchase associated with the ultimate Preferred Alternative cross section
- Widening I- 25 between SH 392 and Prospect - would initially be used as continuous accel/decel lanes but would ultimately become part of the six-lane cross section. Widening would include noise and sound walls, water quality ponds, and median barrier features necessary in to accommodate this improvement. Right of way purchase associated with the ultimate Preferred Alternative cross section is also included.
- Widening I-25 between $120^{\text {th }}$ Avenue and approximately US 36 - one buffer-separated tolled express lane in each direction. Widening would include noise and sound walls, water quality ponds and median barrier features as well as the right of way purchase associated with the ultimate Preferred Alternative cross section.
- Interchange replacement and upgrades - SH 14, Prospect, SH 56, CR 34, SH 7, 104 Avenue, Thornton Parkway and $84^{\text {th }}$ Avenue would be constructed to their ultimate configurations. SH 392 would be completed as part of a separate project.
- Six carpool lots at upgraded replaced or upgraded I-25 interchanges
- Commuter Rail right of way preservation - All ROW necessary to construct the ultimate commuter rail configuration would be purchased as part of Phase 1.
- Initial I-25 Bus - Regional bus service connecting Fort Collins and Greeley to downtown Denver and DIA would be initiated. Four transit stations would be constructed as part of Phase 1 and 27 buses would be purchased.
- Commuter Bus - Commuter bus along US 85 connecting Greeley to downtown Denver would be implemented in Phase 1. This would include construction of five stations, 17 queue jumps/transit signal priority intersections and the purchase of five buses.
- Funding to upgrade one or more of the existing bus maintenance facilities in northern Colorado is included in Phase 1

Figure 2 also illustrates the breakdown of funding and projects by planning region.

Phases 2 and 3

Projects identified in Phases 2 and 3 could be implemented sooner than anticipated if funding is identified earlier. However, for the purposes of this phasing discussion the following elements are anticipated to be constructed in phases 2 and 3

Phase 2:
$>$ Completion of express bus service on I-25
$>$ Commuter rail service would begin on an initial corridor segment between Longmont and Loveland

- Construct bus maintenance facility
> Construction of commuter rail maintenance facility
Tolled Express Lanes from SH 56 to SH 14
> Tolled Express Lanes from 120th Avenue to E-470
> Interchange replacement and upgrades - CR 16, SH 60, SH 402, Crossroads, Harmony, Mountain Vista, and SH 1 would be constructed to their ultimate configurations. A first phase of improvements to the US 34 interchange would be completed

Phase 3:

- Completion of commuter rail service

Tolled Express Lanes from E-470 to SH 66 and the associated interchange upgrade required (1 new buffer-separated tolled express lane in each direction)
> General purpose lanes from SH 66 to SH 14 (1 new lane in each direction)
Completion of the US 34 interchange

Phase 1 Capital Improvement Projects

	NFRMPO PROJECTS								
	NFFMPO Roadway Proiects	DESCRIPTITN	[Livect	LANES					
11	1.25: WC 38 to SH 5 6, (no interchange	Add tolled express lanes and reconstruct interchange	1.8	${ }^{2}$	${ }_{536}$	Post 7t. Pot			
2	1-25: SH 56 iterechange	Diamond interchange	2.0		549	Post 7it Pot			
3	1-25: SH 392 to Prospect/ Prospect interchange	Add auxiliary lanes (would accommodate eventu interchange upgrade	7.7	2	\$139	Post 7 Th Pot			
4	1-25: SH 14 interchange	Diamond interchange \& mainline reconstruction	1.4		${ }^{663}$	Post 7th Pot			
	Subtotal Roaday				5287				
	Nfmmpo fapio transit proiectis	Descarprion			CURRENT COST ESTIMATE (in millions	$\begin{aligned} & \text { Fyyong } \\ & \text { SORCE } \end{aligned}$			
5	1 -25US 34 intital bus stations	$1-25 \mathrm{Hammony}$ US 34/838dA Ave. park and idies			${ }^{533}$	Post 7th Pot			
6	Commuter bus stations	US 85 park and idides and trassit prioity features			s10	Post 7 It Pot			
7	Commuter rail	Right-0-way preseeration			s12	Post 7t. Pot			
	SUBTOTAL LTANSSIT				S55				
	TOTAL NFRMPO PROUECTS				\$342				
	AValable funos				\$325				
	DRCOG REGION 4 PROJECTS								
	drcoog ra foawway prouectis	DESGRIPTION		LANES	CURRENT COST ESTIMATE (in million				
8	1-25: SH 66 to WCR 38/WCR 34 interchange reconstruction	Add tolled express lanes	4.0	2	587	$\begin{aligned} & \text { Post 7th Pot and } \\ & \text { congestion } \\ & \text { relief } \end{aligned}$			
	Subtotal Roaoway				587				
	Drcoor ra raplo transit proiscts	DESCRIPTITN			$\begin{aligned} & \text { CURRENT COST } \\ & \text { ESTIMATE (in meng } \end{aligned}$	$\begin{aligned} & \text { Fuvoling } \\ & \text { suline } \end{aligned}$			
9	1-25 intial bus stations	Rapid transit stations SH 7, SH 119 park and rides			S15	${ }^{\text {Ppost } 7 \text { Prot }}$			
10	US 28778NS: Commuter rail	Righto--way preseration			${ }^{513}$	Post 7tipot			
	SUETOTAL LTRANSTI		528						
	TOTAL DRCOOR REGION PROULEGTS				S115				
	avalable funos				\$100				
	DRCOG REGION 6 PROJECTS								
	orcoog fo Roawava proisctis				osscilpion		LMNES		
11	-25: Us 36 to 1200th Avenve	Amend RTP to specify tolled express lanes instead of general purpose lanes. Extend terminus to 120th Ave., upgrade interchanges	4.2	2	\$140	DRCOG RTP			
12	$\begin{aligned} & 1-25.577 \text { intiechange } \\ & \text { reconstruction } \end{aligned}$	Interchange reconstuction			\$50	DRCOG RTP			
					siso				
	avalable funos				\$213				
	UPPER FRONT RANGE PROJECTS								
		osscilipton			$\begin{aligned} & \hline \text { CURRENT COST } \\ & \text { ESTMMATE (nmion) } \\ & \hline \end{aligned}$				
13	Commuter bus staions	US 85 park and dides and trasit priorit	fity fatures		${ }^{56}$	Post 7th Pot			
					${ }_{56}$				
					\$6				
	TOTAL PROUECT COST total avallable funos				5653				
					S644				

		ITEM		Cost/Unit	UNIT	Quantity		Cost	Quantity	Cost	Quantity	Cost
							1			2		3
	1	ROADWAY/CONSTRUCTION										
	1-A	PAVEMENT - QUEUE JUMPS	\$	57	S.Y.	220.000	\$	13,000	0.00	\$	0.00	\$ -
	2	EXPRESS BUS STATIONS	\$	42,490,000	L.S.	0.460	\$	19,545,000	0.00	\$	0.00	\$
	3	COMMUTER BUS STATIONS	\$	4,160,000	L.S.	1.000	\$	4,160,000	0.00	\$	0.00	\$
		SUBTOTAL (B) =						23,718,000		\$		\$
	4	MOBILIZATION		11.0\%	OF (B)		\$	2,609,000		\$	0.00	\$
	5	MISCELLANEOUS BID ITEMS		8.8\%	OF(B)		\$	2,087,000		\$	0.00	\$
	6	BUS MAINTENANCE FACILITY	\$	16,864,000	EACH	0.000	\$		0.00	\$	0.00	\$
	7	TRAFFIC SIGNALS										
	7-A	QUEUE JUMP SIIGNALS	\$	250,000	Each	1.250	\$	- 3 313,000	0.00	\$	0.00	\$
	7-B	OTHER EXISTING SIGNAL MODIFICATIONS	\$	50,000	Each	9.000	\$	450,000	0.00	\$	0.00	\$ -
		TOTAL CONSTRUCTION BID ITEMS (CBI)						29,177,000		\$		\$
	8	UNFORESEEN CONDITIONS		2.0\%	OF (CBI)		\$	584,000		\$		\$
		TOTAL CONSTRUCTION ITEMS (CI)						29,761,000		\$		\$
	9	UTILITIES		7.0\%	OF (Cl)		\$	2,083,000		\$		\$
	10											
	10-A	ENVIRONMENTAL IMPACT STATEMENT										
	10-B	DESIGN		8.8\%	OF (CI)		\$	2,619,000		\$		\$
	10-C	CONSTRUCTION MANAGEMENT		17.0\%	OF (Cl)		\$	5,059,000		\$		\$
	11	RIGHT-OF-WAY (EB-CP-CB)										
	11-A	ROW-EXPRESS BUS		11,690,000	L.S.	0.67	\$	7,832,000	0.00	\$	0.00	\$
	11-B	ROW - СОMMUTER BUS	\$	-	L.S.	1.0	\$	4,068,000	0.00	\$	0.00	\$
	12	EXPRESS BUS VEHICLES	\$	3 	EACH	27	\$	10,152,000	0.00	\$	0.00	\$
	13	COMMUTER BUS VEHICLES	\$	376,000	EACH	5	\$	1,880,000	0.00	\$	0.00	\$
	EXPRESS BUS, COMMUTER BUS - SUBTOTAL 6 63,454,000											

		ITEM	Cost/Unit	UNIT	Quantity		Cost
	1	ROADWAY/CONSTRUCTION					
	1-A	PAVEMENT - QUEUE JUMPS	57	s.y.	220	\$	13,000
	2	EXPRESS BUS STATIONS	\$ 42,490,000	L.S.	1	\$	42,490,000
	3	COMMUTER BUS STATIONS	\$ 4,160,000	L.S.	1	\$	4,160,000
		SUBTOTAL (B) =				\$	46,663,000
	4	MOBILIZATION	11.0\%	OF (B)		\$	5,133,000
	5	MISCELLANEOUS BID ITEMS	8.8\%	OF (B)		\$	4,106,000
	6	BUS MAINTENANCE FACILITY	\$ 16,864,000	EACH	1	\$	16,864,000
	7	TRAFFIC SIGNALS					
	7-A	QUEUE JUMP SIIGNALS	\$ 250,000	Each	1.25	\$	313,000
	7-B	OTHER EXISTING SIGNAL MODIFICATIONS	50,000	Each	9	\$	450,000
		TOTAL CONSTRUCTION BID ITEMS (CBI)				\$	73,529,000
	8	UNFORESEEN CONDITIONS	2.0\%	OF (CBI)		\$	1,471,000
		TOTAL CONSTRUCTION ITEMS (CI)				\$	75,000,000
	9	UTILITIES	7.0\%	OF (Cl)		\$	5,250,000
	10	PLANNING AND ENGINEERING					
	10-A	ENVIRONMENTAL IMPACT STATEMENT					
	10-B	DESIGN	8.8\%	\bigcirc		\$	6,600,000
	10-C	CONSTRUCTIION MANAGEMENT	17.0\%	OF (Cl)		\$	12,750,000
	11	RIGHT-OF-WAY (EB-CP-CB)					
	11-A	ROW - EXPRESS BuS	\$ 11,690,000	L.S.	1	\$	11,690,000
	11-B	ROW- -	\$ ${ }^{\text {\% }}$ 4, $4,068,0000$	L.S.	1	\$	4,068,000
	12	EXPRESS BUS VEHICLES	\$ ${ }^{\text {\% }}$	EACH	27	\$	10,152,000
	13	COMMUTER BUS VEHICLES	\$ 376,000	EACH	5	\$	1,880,000
	EXPRESS BUS, COMMUTER BUS - SUBTOTAL						127,390,000

		ITEM		Cost/Unit	UNIT	Quantity		Cost
	1	EARTHWORK		20\%	OF (TRACKWORK)		\$	10,856,000
	2	BRIDGES/STRUCTURES/TUNNELS						
	2-A	COMMUTER RAIL BRIDGE - span <140' (no curvature)	\$	180	S.F.	17,800	\$	3,204,000
	2-B	COMMUTER RAIL BRIDGE - span >140' (or with curvature)	\$	220	S.F.	37,200	\$	8,184,000
	3	RETAINING WALLS						
	3-A	MSE WALL HEIGHT (0-0.10)	\$	210	L.F.	23,750	\$	4,988,000
	3-B	MSE WALL HEIGHT (10-20)	\$	690	L.F.	6,590	\$	4,547,000
	3 -C	MSE WALL HEIGHT ((20'+)	\$	1,760	L.F.	4,330	\$	7,6221,000
	4	TRACKWORK						
	4-A	DOUBLE BALLASTED TRACK	\$	- 599	L.F.	35,150	\$	21,055,000
	4-B	SINGLE BALLASTED TRACK	\$	$\begin{array}{r}332 \\ \hline \quad 133\end{array}$	T.F.	95,245	\$	31,621,000
	4-C	SPECIAL TRACK: NO. 11 TURNOUT		133,500	EACH	12	\$	1,602,000
	5	ACCESS ROAD						
	5-A	13 ' GRAVEL ACCESS ROAD	\$	- $\square_{\square}^{-(\square)}$	TON	97,330	\$	1,947,000
	6	SIGNALS						
	6-A	BASE COMMUNICATION SYSTEM		1, 1,500,000	ROUTE MILE	49	\$	73,350,000
	7	SYSTEM WIDE ELEMENTS						
	7-A	COMMUTER RAIL ACTIVATION \& TESTING		${ }^{2,000,000}$	EACH	2	\$	4,000,000
	7-B	RURAL FENCE	\$	5.30	L.F.	410,300	\$	2,175,000
	8	AT GRADE CROSSING		136,700	EACH	39	\$	5,331,000
		SUBTOTAL (C) =					\$	180,481,000
	9	DRAINAGE		7.0\%	$\mathrm{OF}(\mathrm{C})$			12,634,000
	10	NOISE AND VIBRATION		2.0\%	OF(C)			3,610,000
	11	SIGNING AND STRIPING		1.0\%	OF (C)	0		1,805,000
	12	CONSTRUCTION TRAFFIC CONTROL		6.0\%	$\mathrm{OF}(\mathrm{C})$		\$	10,829,000
	13	MOBILIZATION		15.0\%	OF (C)		\$	27,072,000
	14	MISCELLANEOUS BID ITEMS		10.0\%	OF (C)		\$	18,048,000
	15	COMMUTER RAIL STATIONS		32,845,000	L.S.	1	\$	32,845,000
	16	MAINTENANCE \& OPERATIONS FACILITY		56,886,000	EACH	1	\$	56,886,000
		TOTAL CONSTRUCTION BID ITEMS (CBI)					\$	344,210,000
	17	UNFORESEEN CONDITIONS		5.0\%	OF (CBI)		\$	17,211,000
		TOTAL CONSTRUCTION ITEMS (CI)					\$	361,421,000
	18	INSURANCE LEGAL		3.0\%	OF (Cl)		\$	10,843,000
	19	UTILITIES		3.0\%	OF (C1)		\$	10,843,000
	20	PLANNING AND ENGINEERING						
	$20-\mathrm{A}$	ENVIRONMENTAL IMPACT STATEMENT		7,000,000	\$		\$	7,000,000
	20-B	DESIGN		8.8\%	OF (Cl)		\$	31,805,000
	20-C	CONSTRUCTION MANAGEMENT		24.0\%	OF (Cl)		\$	86,741,000
	21	COMMUTER RAIL ROW		24,818,000	L.S.	1	\$	24,818,000
	22	FEEDER BUS VEHICLES		303,000	EACH	0	\$	
	23	DMU VEHICLES		5,200,000	EACH	29	\$	150,800,000
	COMMUTER RAIL - SUBTOTAL						\$	684,270,000

Item Number \& Description		Unit	Unit Cost Range		$\begin{aligned} & \text { Most } \\ & \text { Probable } \\ & \text { Value } \end{aligned}$	Percentage of Range	Assumptions	
		Low	High					
l-25 GENERAL PURPOSE + TOLLED EXPRESS LANES (GP-TEL)								
1	REMOVALS \& RELOCATIONS							
1-A	Removal of Pavement	S.Y.	\$2.00	\$10.00	\$3.00	13\%	Assumes removal of concrete pavement and asphalt pavement have the same unit cost. High cost range assumes all pavement is hauled to a recycling center. Low cost range applicable to large projects with over $500,000 \mathrm{SY}$ of removal. The unit cost applied reflects the size of anticipated project construction phases without recycling. Separate applied unit costs are included to reflect differential between North Front Range (Region 4) projects and Denver Metro (Region 6) projects.	
1-B	Removal of Bridges	Each	\$30,000	\$250,000	\$72,000	19\%	Assumes removal and disposal of existing bridge structure, including concrete, reinforcing steel, girders, and bridge deck. CDOT cost data for 2009 identifies $\$ 72,000 /$ bridge as an average. The low cost range is for a small single span bridge. The high cost range is typical of a large four-span bridge either over a water course or high volume traffic. The anticipated structure removals typical for this project include only a minor percentage that will require $\mathrm{I}-25$ closure. The cost used is that average from the recent $\mathrm{I}-25$ projects from SH 7 to SH 66 . Separate applied unit costs are included to reflect differential between North Front Range (Region 4) projects and Denver Metro (Region 6) projects.	
1-C	Removal of Buildings	Each	\$25,000	\$200,000	\$40,000	9\%	Assumes all environmental remediation and complete removal of the structure, and foundation. The low cost range is for a small structure and the high cost range is for a larger structure with greater environmental mitigation requirements. CDOT cost data average for 2008 is $\$ 105,000$ per building and for 2009 is $\$ 50,000$ per building. The appropriate applied unit cost is the same for both North Front Range (Region 4) projects and Denver Metro (Region 6) projects.	
2	ROADWAY							
2-A	Pavement - --25 Mainline	S.Y.	\$35.00	\$60.00	\$40.60	22\%	Assumes concrete pavement at $11-13^{\prime \prime}$ thickness. The unit cost of $\$ 38 / \mathrm{SY}$ was developed using that average of recent l-25 projects from SH 7 to SH 66. CDOT cost data average for 2009 is $\$ 49 / \mathrm{SY}$ for 13 -Inch Concrete Pavement (41,504 SY) and the 2007 average was $\$ 39 / S Y$ for the same (232,099 SY). The high cost range is typical for a small paving project less than 10,000 SY. The low cost range is typical for a large paving project over 200,000 SY. Separate applied unit costs are included to reflect differential between North Front Range (Region 4) projects and Denver Metro (Region 6) projects.	
2-B	Pavement - I-25 Ramps	S.Y.	\$25.00	\$40.00	\$32.50	50\%	Assumes concrete pavement at 8 " -10 "thickness. The unit cost of $\$ 32 / \mathrm{SY}$ was developed using the average of recent I-25 projects from SH 7 to SH 66. The CDOT cost data average for 2009 was $\$ 27.36 / \mathrm{SY}$ for $103 / 4$ " Concrete Pavement (212,084 SY), and the 2007 average was $\$ 33.10 / \mathrm{SY}$ for 10 " Concrete Pavement (41,104 SY). The low cost range is typical for high volume paving projects greater than 200,000 SY and the high cost range is for low volume paving projects less than $10,000 \mathrm{SY}$. The appropriate applied unit cost is the same for both North Front Range (Region 4) projects and Denver Metro (Region 6) projects.	
2-C	Pavement - Crossroads \& Frontage Roads	S.Y.	\$25.00	\$40.00	\$32.50	50\%	Assumes concrete pavement at $10^{\prime \prime}$ thickness. The unit cost of $\$ 58 /$ Ton was developed using the average of recent l-25 projects from SH 7 to SH 66 . The CDOT cost data average for 2009 was $\$ 36.41$ for Hot Bituminous Pavement (HBP) (Grading SX)(75) (305,962 Tons), and the 200X average was $\$ 51.47 /$ Ton for HBP (Grading SX)(100)(PG 64-22)(129,500 Tons) . The low cost range is typical for high volume paving projects over 50,000 Tons and the high cost range is for low volume paving projects less than 1,000 Tons. Separate applied unit costs are included to reflect differential between North Front Range (Region 4) projects and Denver Metro (Region 6) projects.	
2-D	Aggregate Base Course (Class 6)	C.Y.	\$15.00	\$40.00	\$21.90	28\%	Assumes Aggregate Base Course (ABC) (Class 6) at 6 " thickness as part of a composite section for all bituminous and concrete pavements. The unit cost of $\$ 20 / \mathrm{CY}$ was developed using the average of recent I-25 projects from SH 7 to SH 66. The CDOT cost data average for 2009 was $\$ 32.00 / \mathrm{CY}$ for ABC (Class 6) (80,390 CY), and the 2008 average was $\$ 23.57 / \mathrm{CY}(58,658 \mathrm{CY}$). The low cost range is typical for high volume paving projects over $50,000 \mathrm{CY}$ with a close source of aggregate and the high cost range is for low volume paving projects less than $1,000 \mathrm{CY}$ and an aggregate source located at a greater distance from the project. Separate applied unit costs are included to reflect differential between North Front Range (Region 4) projects and Denver Metro (Region 6) projects.	

Item Number \& Description		Unit	Unit Cost Range		$\begin{aligned} & \text { Most } \\ & \text { Probable } \\ & \text { Value } \end{aligned}$	Percentage of Range	Assumptions	
		Low	High					
2-E	Guardrail Type 7		L.F.	\$50.00	\$100.00	\$90.00	80\%	Assumes concrete barrier in accordance with the CDOT M\&S Standards. The unit cost of $\$ 58 / \mathrm{LF}$ was developed using the average of recent $1-25$ projects from SH 7 to SH 66. The CDOT cost data average for 2009 was $\$ 67 / \mathrm{LF}$ for CDOT Standard Guardrail Type 7 (Style CA) (9,233 LF), and the 2008 average was $\$ 56 / \mathrm{LF}$ ($29,639 \mathrm{LF}$). The low cost range is typical for a large quantity project over $10,000 \mathrm{LF}$ and the high cost range is for a small quantity project with less than 1,000 LF. Separate applied unit costs are included to reflect differential between North Front Range (Region 4) projects and Denver Metro (Region 6) projects.
2-F	Tensioned Cable Barrier	L.F.	\$9.00	\$15.00	\$9.90	15\%	Assumes application of tensioned cable barrier in accordance with the CDOT M\&S Standards continued along I25 median similar to recent l-25 projects from SH 7 to SH 66. The unit cost of $\$ 10.49 / \mathrm{LF}$ was developed using the average of recent I-25 projects from SH 7 to SH 66. The CDOT cost data average for 2009 was $\$ 12.29 / \mathrm{LF}$ for CDOT Standard Tensioned Cable Barrier (36,732 LF), and the 2008 average was \$13.96/LF (37,415 LF). The low cost range is typical for a large quantity project over $10,000 \mathrm{LF}$ and the high cost range is for a small quantity project with less than 1,000 LF. The appropriate applied unit cost is the same for both North Front Range (Region 4) projects and Denver Metro (Region 6) projects.	
3	BRIDGE STRUCTURES							
3-A	Bridge - Standard	S.F.	\$85.00	\$150.00	\$105.00	31\%	This bridge classification is intended to be comprised of the span lengths and structure types most commonly used for bridge construction in Colorado. Span lengths in this classification are generally less than 140' and include Precast Prestressed Girders (BT, Box, or U-Tub) and Concrete Slab (Precast Prestressed or Cast-InPlace) The unit cost of $\$ 105 /$ SF was developed using the average of recent I- 25 projects from SH 7 to SH 66. The CDOT cost data average for 2009 was $\$ 90 /$ SF for CDOT Standard Prestress Girder (Box Section) (65,663 SF), the 2008 average was $\$ 136 /$ SF (15,418 SF) and the 2007 average was $\$ 86 / S F$ (10,335 SF). The low cost range is typical for a large quantity project over 20,000 SF and the high cost range is for a small quantity project with less than 10,000 SF. The appropriate applied unit cost is the same for both North Front Range (Region 4) projects and Denver Metro (Region 6) projects.	
3-B	Bridge - Long Span	S.F.	\$85.00	\$170.00	\$115.00	35\%	This bridge classification consists of structure types and span lengths that are outside the definition of a standard bridge. This bridge is typical of for crossroads over I- 25 where a center median pier is not allowed. These structure types include a Post-Tensioned Precast Concrete U Girder, Cast-in-Place Post-Tensioned Box or U- Girder, Steel Plate Girder, Steel Box Girder, or Pedestrian Overpass Truss Arch Structure. The unit cost of $\$ 115 /$ SF was developed using the average of recent l-25 projects from SH 7 to SH 66. The CDOT cost data average for 2009 was $\$ 131 /$ SF for Prestress/Post-Tensioned Concrete I-Girder (5,828 SF), and \$110/SF for Fabricated Steel Girder (20,751 SF). The 2008 average was $\$ 123 /$ SF for Rolled Steel GIrder (16,076 SF), and the 2006 average was $\$ 152 /$ SF for Post-Tenstioned Box Girder (90,520 SF). CDOT Region 4 has accepted a two-span (Standard) type of structure for the recent No-Action project at the I-25/SH 392 interchange. As such, the possibilty that CDOT Region 4 will accept a two-span (Standard) structure in lieu of a Long Span structure at other interchange locations along $\mathrm{I}-25$, the low cost range is extended to the same low cost for a Standard Bridge	
3-C	Bridge - Pedestrian Overpass	S.F.	\$700.00	\$1,000.00	\$910.00	70\%	This bridge classification is for highway pedestrian overpasses along I-25. However, the cost information source is derived from RTD FasTracks and TREX available cost data for similar type structures. The cost/s.f. assumes 1 elevator and tower, 1 set of stairs at each end of the pedestrian bridge, lighting, and security.	

	Item Number \& Description		Unit	Unit Cost Range		$\begin{gathered} \text { Most } \\ \text { Probable } \\ \text { Value } \end{gathered}$	Percentage of Range	Assumptions	
			Low	High					
	3-D	Bridge - Flyover		S.F.	\$102.00	\$170.00	\$121.00	28\%	This bridge classification is soley for the flyovers required for the I-25/US 34 Interchange. The maximum span lenght was held to 275 ' in order to allow for alternative girder options, including Post-Tensioned Precast Concrete U Girders and Precast Segmental. The unit cost of $\$ 121 /$ SF was developed using the average of flover structures E-17-QJ and E-17-QK. The CDOT cost data average for 2006 was $\$ 152 / \mathrm{SF}$ for Post Tensioned Box Girder ($90,520 \mathrm{SF}$).. The low cost range is typical for a large quantity project over 20,000 SF and the high cost range is for a small quantity project with less than 5,000 SF . The appropriate applied unit cost is the same for both North Front Range (Region 4) projects and Denver Metro (Region 6) projects.
	4	RETAINING WALL STRUCTURES							
	4-A	MSE Wall ((0-10' Height)	L.F.	\$190.00	\$220.00	\$210.00	67\%	Assumes a mechanically stabilized earth retaining wall, including Structure Excavation, Structure Backfill (Class 1), Mechanical Reinforcement of Soil, lock Facing and Structural Concrete Coating. This item assumes an average wall height of 7.5^{\prime}. The unit cost of $\$ 200 / L F$ was developed using the average of recent $\mathrm{I}-25$ projects from SH 7 to SH 66. The CDOT cost data average for 2009 was $\$ 8.67 / \mathrm{CY}$ for Structure Excavation (92,674 LF), $\$ 16.79 / \mathrm{CY}$ for Structure Backfill (Class 1) (132,151 CY), $\$ 13.68 / \mathrm{CY}$ for Mechanical Reinforcement of Soil ($72,752 \mathrm{CY}$), $\$ 12.66 /$ SF for Block Facing ($104,971 \mathrm{SF}$), and $\$ 1.07 /$ SF for Structural Concrete Coating (15,464 SF). The low cost range is typical for a large quantity project over $1,000 \mathrm{LF}$ and the high cost range is for a small quantity project with less than 100 LF . Separate unit costs are included to reflect cost differentials between North Front Range (Region 4) projects and Denver Metro (Region 6) projects.	
	4-B	MSE Wall (10^{\prime}-20' Height)	L.F.	\$560.00	\$750.00	\$690.00	68\%	Assumes a mechanically stabilized earth retaining wall, including Structure Excavation, Structure Backfill (Class 1), Mechanical Reinforcement of Soil, lock Facing and Structural Concrete Coating. This item assumes an average wall height of 15 '. The unit cost of $\$ 660 / \mathrm{LF}$ was developed using the average of recent $\mathrm{I}-25$ projects from SH 7 to SH 66. The CDOT cost data average for 2009 was $\$ 8.67 / \mathrm{CY}$ for Structure Excavation ($92,674 \mathrm{LF}$), $\$ 16.79 / \mathrm{CY}$ for Structure Backfill (Class 1) (132,151 CY), $\$ 13.68 / \mathrm{CY}$ for Mechanical Reinforcement of Soil ($72,752 \mathrm{CY}$), $\$ 12.66 /$ SF for Block Facing ($104,971 \mathrm{SF}$), and $\$ 1.07 /$ SF for Structural Concrete Coating (15,464 $\mathrm{SF})$. The low cost range is typical for a large quantity project over $1,000 \mathrm{LF}$ and the high cost range is for a small quantity project with less than 100 LF. Separate applied unit costs are included to reflect cost differentials between North Front Range (Region 4) projects and Denver Metro (Region 6) projects.	
	4-C	MSE Wall (20 '+ Height)	L.F.	\$1,340.00	\$1,900.00	\$1,760.00	75\%	Assumes a mechanically stabilized earth retaining wall, including Structure Excavation, Structure Backfill (Class 1), Mechanical Reinforcement of Soil, lock Facing and Structural Concrete Coating. This item assumes an average wall height of 25^{\prime}. The unit cost of $\$ 1,680 / \mathrm{LF}$ was developed using the average of recent $\mathrm{I}-25$ projects from SH 7 to SH 66. The CDOT cost data average for 2009 was $\$ 8.67 / \mathrm{CY}$ for Structure Excavation ($92,674 \mathrm{LF}$), $\$ 16.79 / \mathrm{CY}$ for Structure Backfill (Class 1) (132,151 CY), $\$ 13.68 / \mathrm{CY}$ for Mechanical Reinforcement of Soil ($72,752 \mathrm{CY}$), $\$ 12.66 /$ SF for Block Facing ($104,971 \mathrm{SF}$), and $\$ 1.07 /$ SF for Structural Concrete Coating (15,464 SF). The low cost range is typical for a large quantity project over $1,900 \mathrm{LF}$ and the high cost range is for a small quantity project with less than 100 LF. Separate applied unit costs are included to reflect differential between North Front Range (Region 4) projects and Denver Metro (Region 6) projects.	
	5	SOUND WALLS	S.F.	\$10.00	\$35.00	\$22.24	49\%	Assumes a masonry fence with a height range from 10 ' to 16 '. The unit cost of $\$ 13.13 / \mathrm{SF}$ was developed using the average of various Region 6 projects. The CDOT cost data average for 2007 was $\$ 33 /$ SF for CDOT Fence Masonry (Sound Barrier) ($3,300 \mathrm{SF}$). The low cost range is typical for a large quantity project over 20,000 SF and the high cost range is for a small quantity project with less than 1,000 SF. The appropriate applied unit cost is the same for both North Front Range (Region 4) projects and Denver Metro (Region 6) projects.	

FHWA Cost Estimate Review

	Item Number \& Description		Unit	Unit Cost Range		Most Probable Value	Percentage of Range	Assumptions	
			Low	High					
	6	LIGHTING		$\begin{gathered} \text { \% of } \\ \text { Quantified } \\ \text { Items } \end{gathered}$	1.0\%	2.0\%	1.7\%	70\%	This percentage total represents a compilation of lighting related items including the following: light standards, concrete foundations, lighting control center, luminaires, electrical conduit, wiring. Separate percentages are included to reflect cost differentials between North Front Range (Region 4) projects and Denver Metro (Region 6) projects.
	7	EARTHWORK							
		Earthwork - CDOT Region 4	$\begin{gathered} \% \text { of } \\ \text { Quantified } \\ \text { Items } \end{gathered}$	20.0\%	30.0\%	22.8\%	28\%	This percentage total represents a compilation of earthwork related items including the following: embankment material, unclassified excavation and muck excavation. Separate eartwork line items were identified for the two CDOT regions due to the relatively large disparity in percentage ranges between to the two regions for this item. The higher percentage range is typical for I-25 projects in Region 4 north of SH 66 wherein profile grade and horizontal alignment revisions are part of the project(s).	
		Earthwork - CDOT Region 6	$\begin{gathered} \% \text { of } \\ \text { Quantified } \\ \text { Items } \end{gathered}$	3.0\%	6.0\%	5.1\%	70\%	This percentage total represents a compilation of earthwork related items including the following: embankment material, unclassified excavation and muck excavation. Separate earthwork line items for were identified for the two CDOT regions due to the relatively large disparity in percent ranges between the two regions for this item. The lower percentage range is typical for l-25 projects in Region 6 wherein no significant profile grade revisions or alignment revisions are part of the project(s).	
	8	DRAINAGE	$\begin{gathered} \text { \% of } \\ \text { Quantified } \\ \text { Items } \end{gathered}$	8.0\%	12.0\%	10.7\%	67.5\%	This percentage total represents a compilatiion of drainage related items including the following: riprap, pipe (concrete, plastic, corrugated metal), inlets, manholes, drains (under, edge, sub-surface), trash guards, and box culverts. Separate applied percentages are included to reflect cost differentials between North Front Rage (Region 4) projects and Denver Metro (Region 6) projects.	
	9	EROSION CONTROL	$\begin{gathered} \% \text { of } \\ \text { Quantified } \\ \text { Items } \end{gathered}$	2.0\%	3.5\%	3.1\%	73.3\%	This percentage total represents a compilation of erosion control related items including the following: topsoil, erosion bales, silt fence, sediment basins, erosion control supervisor, seeding, mulching, soil retention blankets, and herbicide treatments. It does not include ROW, earthwork, pipe, or structures for MS4 components. Separate applied percentages are included to reflect cost differentials for these items between North Front Range (Region 4) projects and Denver Metro (Region 6) projects.	
	10	SIGNING AND STRIPING	$\begin{gathered} \text { \% of } \\ \text { Quantified } \\ \text { Items } \end{gathered}$	1.0\%	3.0\%	2.3\%	65.0\%	This percentage total represents a compilation of signing and striping related items including the following: delineators, sign panels, sign posts, sign structures (cantilever, butterfly), preformed pavement marking, and paint. Separate applied percentages are included to reflect cost differentials between North Front Range (Region 4) projects and Denver Metro (Region 6) projects.	
	11	CONSTRUCTION TRAFFIC CONTROL	$\%$ of Quantified Items	5.0\%	14.0\%	12.3\%	81.1\%	This percentage total represents a compilation of construction traffic control related items including the following: detour pavement, flagging, traffic control management and inspection, temporary signing, traffic control devices (barrier, barrels, cones, arrow panels), impact attenuators. Separate applied percentages are included to reflect cost differentials between North Front Range (Region 4) projects and Denver Metro (Region 6) projects.	
	12	URBAN DESIGN / LANDSCAPING	$\%$ of $\begin{array}{c}\text { Quantified } \\ \text { Items }\end{array}$	0.0\%	2.0\%	1.0\%	50.0\%	This percentage total represents a compilation of urban design and landscape related items including the following: sod, mulch, seeding, trees and irrigation. Separate applied percentages are included to reflect cost differentials between North Front Range (Region 4) projects and Denver Metro (Region 6) projects.	
	13	MOBILIZATION							
		Mobilization - Region 4	$\begin{gathered} \hline \% \text { of } \\ \text { Quantified } \\ \text { Items } \end{gathered}$	15.1\%	16.2\%	15.7\%	54.5\%	This percentage total includes all costs per the CDOT Specifications. Separate mobilization line items were identified for the two CDOT regions due to the relatively large disparity in percentage ranges between the two regions for this item. However, the cost range for this item in Region 4 is relatively narrow.	
		Mobilization - Region 6	$\begin{gathered} \text { \% of } \\ \text { Quantified } \\ \text { Items } \end{gathered}$ Items	4.9\%	10.4\%	7.1\%	40.0\%	This percentage total includes all costs per the CDOT Specifications. Separate mobilization line items were identified for the two CDOT regions due to the relatively large disparity in percentage ranges between the two regions for this item. The high end of the cost range represents more recent $1-25$ construction, which may be assumed to be of a higher probability than the lower end of the cost range.	
	14	MISCELLANEOUS BID ITEMS	\qquad	7.0\%	8.0\%	7.7\%	70.0\%	This percentage includes costs for other known CDOT bid items not represented by either the quantifiable or percentage line items identified above.	

Methodology and Assumptions

Item Number \& Description		Unit	Unit Cost Range		Most Probable Value	Percentage of Range	Assumptions	
		Low	High					
15	CARPOOL PARKING		LS	\$3,600,000	\$5,400,000	\$4,460,000	47.8\%	Unit cost data from RTD 2010 Annual Program Review, West Corridor and SWC Extension. Municipal requirements could vary causing the cost to be lower or higher. The cost range accounts for varying bid prices and carpool lot sizes, affecting ecomomies of scale. This lump sum item represents all costs associated with all of the carpool facilities along the $\mathrm{I}-25$ corrridor, including ingress and egress facilities, bus turnaround paving, bike racks, etc.
16	INTELLIGENT TRANSPORTATION SYSTEM	Mile	\$160,000.00	\$175,000.00	\$169,000	60.0\%	This unit cost represents a compilation of ITS related items including the following: LED Variable Message System, concrete foundation, closed circuit television cameras and poles, and weather station. The appropriate applied unit cost is the same for both North Front Range (Region 4) projects and Denver Metro (Region 6) projects. This item includes 1 VMS Board/Foundation every 2 miles in both directions, 1 Weather Station every 5 miles, 1 Communication Equipment Station every 2 miles in both directions, and 1 Closed Circuit Television every 2 miles in both directions.	
17	MANAGED LANE SYSTEM	Mile	\$150,000.00	\$300,000.00	\$180,000	20.0\%	This unit cost represents a compilation of managed lane system related items including the following: sing structures, electronic equipment, cabinets, power supply, cameras, testing, . The appropriate applied unit cost is the same for both North Front Range (Region 4) projects and Denver Metro (Region 6) projects.	
18	TRAFFIC SIGNALS	Each	\$200,000.00	\$300,000.00	\$250,000	50.0\%	This unit cost represents a compilation of traffic signal related items including the following: traffic signal poles with mast arms, electrical conduit, signal heads, controller, cabinet, and power supply. The appropriate applied unit cost is the same for both North Front Range (Region 4) projects and Denver Metro (Region 6) projects.	
19	PORT OF ENTRY (BUILDING AND PIT SCALES)	Each	\$370,000	\$440,000	\$410,000	57.1\%	This unit cost represents a port of entry building and weighs scales for each location. The cost of pavement, barrier, signing, and advanced warning have not been included in the cost. The applied unit cost is appropriate for the North Front Range (Region 4) since there is only one project location for the Preferred Alternative.	
20	UNFORESEEN CONDITIONS	\% Of (CBI)	0.0\%	2.0\%	1.0\%	50\%	This item accounts for any unforeseen conditions that are not covered under all of the other quantifiable or percentage bid items above. These unforeseen conditions generally may include any unknown removals or environmental conditions that require mitigation.	
21	UTILITIES	\% Of (CBI)	4.0\%	5.0\%	4.6\%	60\%	This percentage total represents a compilation of utility related items including relocations and abandonments for gas, water, sanitary sewer, communication and electric services and mains not covered under relocation agreements. The appropriate applied percentage is the same for both North Front Range (Region 4) projects and Denver Metro (Region 6) projects.	
22	PLANNING \& ENGINEERING						This percentage total represents a compilation of utility related items including relocations and abandonments for gas, water, sanitary sewer and electric services and mains.	
22-A	Environmental Impact Statement	NA	NA	NA	NA	NA	The amount included in this item represents that portion of the actual costs associated with the environmental process that can reasonably be attributed to the I-25 General Purpose and Tolled Express Lanes for the Preferred Alternative. This cost is not included in any of the (future) project phases, but is included in the overall project cost.	
22-B	Design	\% Of (CBI)	6.0\%	10.0\%	8.8\%	70\%	This percentage total represents a compilation of design related items including survey, geotechnical, preliminary and final design, and preparation of construction documents. The appropriate applied percentage is the same for both North Front Range (Region 4) projects and Denver Metro (Region 6) projects.	
22-C	Construction Management	\% Of (CBI)	12.0\%	24.0\%	17.0\%	42\%	This percentage total represents a compilation of construction management related items including: field office, materials testing, construction surveying, construction observation and management. The lower end of this percentage range represents larger PA implementation projects such as design/build projects greater than \$100 million. The upper end of the percentage range represents with no exceptions from the CM CDOT policy/planning budget standard and a larger number of projects for PA implementation. The appropriate applied percentage is the same for both North Front Range (Region 4) projects and Denver Metro (Region 6) projects.	

	Item Number \& Description		Unit	Unit Cost Range		MostProbable Value	Percentage of Range	Assumptions	
			Low	High					
									For the Service Island, the Island Supervisor is a shared office adjacent to the Service Island, and the Fueling Lane/Fare Retrieval/Clean Lane accommodates a standard 40^{\prime} Motor Coach with a bus per position ratio of 75:1. Also, the Vacuum Equipment room includes storage for detail supply, the service storage room accommodates forklift access, and the Lube/Compressor room is above ground fluid tanks. For Exterior Areas, the Diesel Fuel Tank is a 30,000 gallon above ground tank, and the Unleaded Fuel Tank is an 8,000 gallon above ground tank. A reduced construction cost adjustment of 5% is included to account for the difference between construction in Northern California and the Denver Metro Area. The Paint and Body Shop and equipment was eliminated as this was assumed to be contracted out. Also, the Eng/Trans - O/H is assumed to be contracted out.
	5	MOBILIZATION							
		Mobilization - Region 4	Of (B)	5.0\%	9.0\%	7.1\%	53\%	This percentage total includes all costs per the CDOT Specifications. Separate mobilization line items were identified for the two CDOT regions due to the relatively large disparity in percentage ranges between the two regions for this item.	
		Mobilization - Region 6	Of (B)	8.0\%	18.0\%	15.7\%	77\%	This percentage total includes all costs per the CDOT Specifications. Separate mobilization line items were identified for the two CDOT regions due to the relatively large disparity in percentage ranges between the two regions for this item.	
	6	MISCELLANEOUS BID ITEMS	$\begin{array}{c\|} \hline \% \text { of } \\ \text { Quantified } \\ \text { Items } \end{array}$	5.0\%	20.0\%	8.8\%	25\%	This percentage includes costs for other known bid items not representated by either the quantifiable or percentage line items above.	
	7	TRAFFIC SIGNALS							
	7-A	Queue Jump Signals	Each	\$176,000	\$289,000	\$250,000	65\%	The unit cost assumes a signalized intersection using the following items: $4 x$ traffic signal poles with mast arms, foundations, \& signal heads, illumination, pedestrian countdown heads and pushbuttons for 4 crosswalks, vehicle detection for 4 approaches, preemption, electrical conduit, controller, cabinet, \& power supply. Signal interconnection assumed to already exist since these will be installed at existing signals. Individual item high and low prices taken from CDOT Bid Price book averages for 2007 thru 2009. Some existing equipment may be able to be reused, depending on condition of existing hardware.	
	7-B	Other Existing Signal Modifications	Each	\$30,000	\$60,000	\$50,000	67\%	Includes the costs associated with traffic signal modifications at locations other than queue jump signals.	
	8	UNFORESEEN CONDITIONS	$\begin{array}{\|c\|} \hline \% \text { of } \\ \text { Quantified } \\ \text { Items } \end{array}$	0.0\%	2.0\%	1.0\%	50\%	This item accounts for any unforeseen conditions that are not covered under all of the other quantifiable or percentage bid items above. These unforeseen conditions generally may include any unknown removals or environmental conditions that require mitigation.	
	9	UTILIties	\qquad	5.0\%	8.0\%	7.0\%	67\%	This percentage total represents a compilation of utility related items including relocations and abandonments for gas, water, sanitary sewer, communication and electric services and mains not covered under relocation agreements.	
	10	PLANNING \& ENGINEERING							
	10-A	Environmental Impact Statement	NA	NA	NA	NA	NA	The amount included in this item represents that portion of the actual costs associated with the environmental process that can reasonably be attributed to the $\mathrm{I}-25$ General Purpose and Tolled Express Lanes for the Preferred Alternative. This cost is not included in any of the (future) project phases, but is included in the overall project cost.	
	10-B	Design	Of (Cl)	6.0\%	11.0\%	8.8\%	56\%	This percentage total represents a compilation of design related items including survey, geotechnical, preliminary and final design, and preparation of construction documents. This item covers the cost for completion of final design from the current design status to completion of preparation of construction documents.	

FHWA Cost Estimate Review

	Item Number \& Description		Unit	Unit Cost Range		Most Probable Value	Percentage of Range	Assumptions	
			Low	High					
	3-B	MSE Wall ($10^{\prime}-20^{\prime}$ Height)		L.F.	\$560.00	\$750.00	\$690.00	68\%	Assumes a mechanically stabilized earth retaining wall, including Structure Excavation, Structure Backfill (Class 1), Mechanical Reinforcement of Soil, lock Facing and Structural Concrete Coating. This item assumes an average wall height of 15 '. The unit cost of $\$ 660 / \mathrm{LF}$ was developed using the average of recent l-25 projects from SH 7 to SH 66. The CDOT cost data average for 2009 was $\$ 8.67 / \mathrm{CY}$ for Structure Excavation ($92,674 \mathrm{LF}$), $\$ 16.79 / \mathrm{CY}$ for Structure Backfill (Class 1) ($132,151 \mathrm{CY}$), $\$ 13.68 / \mathrm{CY}$ for Mechanical Reinforcement of Soil ($72,752 \mathrm{CY}$), $\$ 12.66 /$ SF for Block Facing ($104,971 \mathrm{SF}$), and $\$ 1.07 /$ SF for Structural Concrete Coating (15,464 SF). The low cost range is typical for a large quantity project over $1,000 \mathrm{LF}$ and the high cost range is for a small quantity project with less than 100 LF. Separate applied unit costs are included to reflect cost differentials between North Front Range (Region 4) projects and Denver Metro (Region 6) projects.
	3-C	MSE Wall (20 '+ Height)	L.F.	\$1,340.00	\$1,900.00	\$1,760.00	75\%	Assumes a mechanically stabilized earth retaining wall, including Structure Excavation, Structure Backfill (Class 1), Mechanical Reinforcement of Soil, lock Facing and Structural Concrete Coating. This item assumes an average wall height of 25^{\prime}. The unit cost of $\$ 1,680 / \mathrm{LF}$ was developed using the average of recent $\mathrm{I}-25$ projects from SH 7 to SH 66. The CDOT cost data average for 2009 was $\$ 8.67 / \mathrm{CY}$ for Structure Excavation ($92,674 \mathrm{LF}$), $\$ 16.79 / \mathrm{CY}$ for Structure Backfill (Class 1) (132,151 CY), $\$ 13.68 / \mathrm{CY}$ for Mechanical Reinforcement of Soil (72,752 CY), $\$ 12.66 /$ SF for Block Facing (104,971 SF), and $\$ 1.07 /$ SF for Structural Concrete Coating (15,464 SF). The low cost range is typical for a large quantity project over $1,900 \mathrm{LF}$ and the high cost range is for a small quantity project with less than 100 LF. Separate applied unit costs are included to reflect differential between North Front Range (Region 4) projects and Denver Metro (Region 6) projects.	
	4	TRACKWORK							
	4-A	Double Ballasted Track	L.F.	\$540	\$710	\$599	35\%	Unit cost data from RTD 2010 Annual Program Review. Includes all items for new track including rails, ties, ballast, subballast, welding and installation. Cost range is dependent on concrete or wood ties, size and thickness of ballast, condition of subgrade and need for sub drain system.	
	4-B	Single Ballasted Track	T.F.	\$260	\$350	\$332	80\%	Unit cost data from RTD 2010 Annual Program Review. Includes all items for new track including rails, ties, ballast, subballast, welding and installation. This also includes all items associated with the removal and replacement of track in areas where existing track needs rehabilitation. Cost range is dependent on concrete or wood ties, size and thickness of ballast, condition of subgrade and need for sub drain system.	
	4-C	Special Track - No. 11 Turnout	Each	\$126,760	\$170,115	\$133,500	16\%	Unit cost data from RTD 2010 Annual Program Review which is based on supplier quotes, includes all items and installation per BNSF specifications. Specific costs not found for \#11, but used range of construction costs for \#15 compared to RTD's estimate for Turnout \#15 and extrapolated for a \#11. Range of costs is dependent on location of installation. Turnouts are located in rural open railroad ROW and in downtown Ft. Collins.	
	5	MAINTENANCE ROAD							
	5-A	Gravel Road (13' Wide)	Ton	\$15	\$40	\$20	20\%	Per BNSF standards, the gravel road is comprised of an extension of the railroad subballast. The quantity for this item was calculated using a $12^{\prime \prime}$ deep section with a 2:1 outside sideslope. The subballast can be material similar to roadway aggregate. The same assumptions for Aggregate Base Course Class 6 for roadway would be considered for this item.	
	6	SIGNALS							
$\underset{\underbrace{}}{\substack{\text { 亿}}}$	6-A	Base Communications System	Route Mile	\$892,000	\$1,762,780	\$1,500,000	70\%	Assumes both signal system and communication system. This item includes centralized traffic control, block signals, power operated switch machines and at-grade crossing signal warning protection. It also includes all electrical equipment and equipment used to support communication between wayside equipment and the operations control center. Cost range accounts for work that may or may not be needed for stations, maintenance facility and connecting to existing systems.	
	7	SYSTEM WIDE ELEMENTS							
	7-A	Commuter Rail Activation and Testing	Each	\$1,500,000	\$3,500,000	\$2,000,000	25\%	Unit cost data from RTD 2010 Annual Program Review. Assumes cost of commuter rail start-up and testing prior to public use. Cost range varies with estimates from other projects and could be affected by the number of stations and the maintenance facility.	

FHWA Cost Estimate Review

	Item Number \& Description		Unit	Unit Cost Range		Most Probable Value	Percentage of Range	Assumptions	
			Low	High					
$\begin{aligned} & \text { ñ } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	7-B	Rural Fence		L.F.	2.50	16.00	\$5.30	21\%	Assumes wire fence on ROW lines on both sides of rail corridor through non-urban areas. Fence was not considered in downtown Longmont, Loveland and Ft. Collins. Unit cost data from RTD Northwest Corridor. Cost range assumes chain link fencing would be required in some areas with wire fence throughout most of the corridor.
	8	AT GRADE CROSSING IMPROVEMENTS	Each	112,400	174,840	\$136,730	39\%	Assumes the reconstruction of signalized intersections to accommodate new track, reconstructed roadway pavement and re-signalization of traffic signals. Unit cost data from RTD Northwest Corridor. Cost range is based on the different size of crossings and the length of roadway reconstruction needed. Applied cost was arrived at by the number of each type of crossing divided by the total number of crossings.	
	9	DRAINAGE	$\begin{gathered} \% \\ \text { Of (Cl) } \end{gathered}$	3.0\%	10.0\%	7\%	57\%	Based on RTD Northwest Corridor with a similar mix of urban and rural drainage. Assumes the cost of all items included in storm sewer systems, cross culverts and any necessary grading for ponds and ditches. The lower cost is from a more itemized estimate further into design and the higher cost is more consistent with a project at a conceptual level. Work in the BNSF ROW will match drainage patterns that exist. The majority of the work will be in the south half of the project placing track through undeveloped land.	
	10	NOISE AND VIBRATION	$\begin{gathered} \% \\ \text { Of (Cl) } \end{gathered}$	1.0\%	4.0\%	2\%	33\%	Assumes the use of noise and vibration mitigation measures in urban areas only. Option would include continuous welded rails, resilient rail fasteners and ballast mats. Unit cost from RTD Northwest Corridor. Relatively short lengths of this will be needed compared to overall length of project. Even though trackwork is not included in Ft. Collins, percentage could be higher if mitigation is required. Lower percentage would apply if less expensive mitigation measures are used.	
	11	SIGNING AND STRIPING	$\begin{gathered} \hline \% \\ \text { Of (CI) } \\ \hline \end{gathered}$	0.5\%	1.5\%	1\%	50\%	Signing and striping costs apply to roadways only and is limited to roads crossing new track. Percentage range is consistent with CDOT conceptual design	
	12	CONSTRUCTION TRAFFIC CONTROL	$\begin{gathered} \% \\ \text { Of (Cl) } \end{gathered}$	3.0\%	10.0\%	6\%	43\%	Assumes 3 major components: crossings, corridor and stations. An average construction period for each was considered and varied by urban or rural location and included roadway traffic control and railroad flaggers. The cost of station construction traffic control was included with the cost of the station, but additional roadway or rail work near the stations was considered here. Higher percentage would apply for additional railroad flagging if required in BNSF corridor.	
	13	MOBILIZATION	$\begin{gathered} \text { \% } \\ \text { Of (Cl) } \end{gathered}$	10.0\%	18.0\%	15.0\%	63\%	Assumes a single mobilization cost for the operations and maintenance facility is covered separately under that item. This item covers the costs assumed for mobilization of no more than two rail line/station projects (North Metro to Longmont and Longmont to Fort Collins).	
	14	MISCELLANEOUS BID ITEMS	$\begin{gathered} \hline \% \\ \text { Of (CI) } \end{gathered}$	5.0\%	20.0\%	10.5\%	37\%	This percentage includes costs for other known bid items not representated by either the quantifiable or percentage line items above.	
	15	COMMUTER RAIL STATIONS	L.S.	\$22,200,000	\$39,500,000	\$32,845,000	62\%	Unit cost data from RTD 2010 Annual Program Review, West Corridor, East Corridor and SWC Extension. Cost could vary depending who is the operating agency. The cost were developed using RTD criteria, a new transit agency could have requirements causing the cost to be lower or higher. One variance could be the requirement of a a grade separated crossing of the BNSF tracks.	
	16	OPERATIONS \& MAINTENANCE FACILITY	Each	\$41,963,200	\$64,946,300	\$56,886,000	65\%	Assumes the cost of construction for a railcar maintenance facility. Includes building, test track, main and secondary access points, spur tracks for rail parking and employee parking. Building furnishings as well as other support equipment is not included in unit cost. The low cost range assumes certain features would be contracted out, such as the shop area and the associated track. Also the elimination of the test track and reduced employee parking. The high cost range would include furniture and support equipment as well as overtime work. See Item 21 in Express Bus-Commuter Bus section above for further details on assumptions for operations and maintenance facilities in general.	
	17	UNFORESEEN CONDITIONS	$\begin{gathered} \% \\ \text { Of (CBI) } \end{gathered}$	0.0\%	2.0\%	1.0\%	50\%	This item accounts for any unforeseen conditions that are not covered under all of the other quantifiable or percentage bid items above. These unforeseen conditions generally may include any unknown removals or environmental conditions that require mitigation.	
	18	INSURANCE \& LEGAL	$\begin{gathered} \% \\ \text { of (Cl) } \end{gathered}$	2.0\%	4.0\%	3.0\%	50\%	Includes contractor's bonding, insurance and legal cost needed for the project. RTD estimates ranged from 2\% to 4% with the higher percentage for a design build project.	

Methodology and Assumptions

Item Number \& Description		Unit	Unit Cost Range		Most Probable Value	Percentage of Range	Assumptions	
		Low	High					
19	UTILITIES		$\begin{gathered} \% \\ \text { Of (Cl) } \end{gathered}$	1.0\%	10.0\%	3.0\%	22\%	Based on RTD Northwest Corridor that is similar in length and urban versus rural location. Cost range varies due to unknown utilities in new railroad ROW east and south of Longmont. The low percentage range indicates minor utility conflicts. The high range assumes that more upgrades to existing utilities would be necessary.
20	PLANNING \& ENGINEERING							
20-A	Environmental Impact Statement	NA	NA	NA	NA	NA	The amount included in this item represents that portion of the actual costs associated with the environmental process that can reasonably be attributed to the $\mathrm{I}-25$ General Purpose and Tolled Express Lanes for the Preferred Alternative. This cost is not included in any of the (future) project phases, but is included in the overall project cost.	
20-B	Design	9\%	6\%	10\%	9.0\%	75\%	Assume project will be built as design, bid, build. Lower percentage is from similar size design/build project.	
20-C	Construction Management	24\%	11\%	30\%	24.0\%	68\%	The construction management costs are based on historic CDOT percentages plus additional percentage for coordination of work in the BNSF ROW. Range of percentages are dependent on work being split into multiple phases, and if they are prepared as design, bid, build or design/build packages.	
21	RIGHT-OF-WAY (CR)	LS	\$24,073,000	\$24,818,000	\$ 24,818,000	100\%	See General Purpose Lanes - Tolled Express Lanes Section Item 22 for additional pertinent details regarding assumptions for right-of-way. The lower end of the cost range represents an estimated 3% reduction in real estate values in Northern Colorado from 2007 (the base year for the ROW cost estimate) to 2009 (the base year for the cost estimate).	
22	FEEDER BUS VEHICLES	Each	\$288,600	\$358,400	\$303,000	21\%	Vehicle assumed to be a 40 ' transit bus. Unit cost is per RTD. High and low costs dependent on number of vehicles purchased. Used 95% of unit cost for low range. High range is from APTA paper on average bus costs.	
23	DMU VEHICLES	Each	\$3,600,000	\$7,000,000	\$5,200,000	47\%	Based on an average cost of various DMU vehicles that are available at the time of this estimate. Cost also based on the number of vehicles purchased.	
COMMUTER RAIL (CR)								

[^0]: End of Forecasts

[^1]: End of Assumptions

